14.7. ФИНАНСОВЫЕ ФЬЮЧЕРСЫ
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
272 273 275 276 278 279 280 281 282 283 284 285 286 287
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
306 307 308 309 310 311 312 313 314 315 316 317 318 319 321 322
323 324 325 326 327 328 329 330 331 332
рабочая книга Рассмотрим теперь вопросы ценообразования финансовых фьючерсов
;'1 Речь пойдет о поставляемых в будущем акциях, облигациях и иностран-SS J ной валюте. В отличие от таких товаров, как пшеница или золото, фи-47 нансовые активы не имеют реальной стоимости. Их не потребляют, не используют в производственных процессах, не держат ради красоты. Ценные бумаги, скорее, можно рассматривать как воплощение требований их владельцев на некие будущие доходы.
Ценные бумаги можно выпускать и хранить при очень низких затратах, что отражается в связи между их ценами слот и фьючерсными ценами. Действительно, в первом приближении мы можем полностью пренебречь этими затратами при получении уравнений паритета между форвардными ценами и ценами спот.
Рассмотрим акции гипотетического взаимного фонда S&P, портфель акций которого характеризуется широкой диверсификацией. Все дивиденды реинвестируются. Форвардный контракт на акции S&P представляет собой обещание поставить акции в некоторый определенный день по оговоренной цене поставки. Обозначим эту форвардную цену F. Сторона, открывающая длинную позицию по форвардному контракту, соглашается в день получения акций заплатить F долларов противоположной стороне, занявшей короткую позицию. Мы обозначим стоимость акции на день передачи S,.
Вместо реальной передачи акций расчеты по контракту обычно осуществляются в денежной форме. Это означает, что передачи акций не происходит, а в день платежа по контракту выплачивается только разница между F и S/. Предположим, например, что форвардная цена составляет 108 долл. за акцию. Тогда в том случае, если цена акции в день их передачи оказывается 109 долл., то сторона, занявшая длинную позицию, получает 1 долл. от стороны, занявшей короткую позицию. Однако если цена спот оказывается равной 107 долл., сторона, занявшая длинную позицию, должна выплатить 1 долл. стороне, занявшей короткую позицию.
Рассмотрим теперь связь между форвардными ценами и ценами спот для акций S&P. Предположим, что цена спот S&P составляет 100 долл., безрисковая процентная ставка равна 8% годовых, а поставка акций предусматривается через год. Какой в таком случае должна быть форвардная цена?
Отметим, что мы можем создать следующую конструкцию, по сути дублирующую получение через год акции фонда S&P. купить безрисковые бескупонные облигации номинальной стоимостью F, одновременно открыв длинную позицию по форвардному контракту для акций S&P. В срок оплаты по форвардному контракту мы погасим облигации по номинальной стоимости F и используем полученные средства для покупки акции S&P по форвардной цене.
Таким образом, форвардный контракт на акции S&P плюс бескупонная облигация образуют синтетическую акцию S&P точно с такими же характеристиками доходности, как и сами акции S&P. В соответствии с законом единой цены две эквивалентные ценные бумаги должны иметь одинаковые цены.
В табл. 14.4 показаны операции и соответствующие им выплаты, применяемые для конструирования акции с помощью бескупонных облигаций и форвардного контракта. Обратите внимание на тот факт, что акции S&P и дублирующий их портфель ценных бумаг (replicating portfolio) имеют через год одну и ту же стоимость, а именно Sj.
Таблица 14.4. Конструирование синтетических бездивидендных акций с помощью 'бескупонных облигаций и форвардного контракта на акции
Позиция Де» Покупка акций
|
южные потоки на начало года - ЮОдолл
|
Денежные потоки через год Si
|
Дублирующий портфель (синтетическая акция)
|
|
|
Открытие длинной позиции по форвардному контракту на акции
|
0
|
S,-F
|
Покупка бескупонных облигаций номинальной стоимостью F
|
-F/1,08
|
F
|
Итоговое движение денег по дублирующему портфелю
|
-F/1,08
|
Si
|
Приравнивая стоимость синтетической акции к стоимости реальной акции, получаем:
(14.5)
откуда следует, что цена спот равна приведенной стоимости форвардной цены, дисконтированной по безрисковой процентной ставке.
Проведя в равенстве 14.5 соответствующие преобразования, находим выражение для форвардной цены F в виде зависимости от текущего значения цены спот S и безрисковой процентной ставки г.
F = S х (1 + г) = 100 долл. х 1,08 = 108 долл.
В более общем случае, если срок выплаты по форвардному контракту и срок погашения для бескупонной облигации составляют Глет, получаем следующее уравнение паритета между форвардными ценами и ценами спот:
(14.6),
согласно которому форвардная цена равна будущей стоимости цены спот на которую начисляется сложный процент по безрисковой процентной ставке в течение Т лет.
Соблюдение этого равенства поддерживается арбитражными операциями. Для доказательства допустим, что оно не выполняется. Сначала предположим, что форвардная цена оказывается слишком высокой для данной безрисковой ставки и цены спот. Предположим, например, что г=0,08, S=100 долл. и форвардная цена, F, равна 109 долл. вместо 108 долл. Таким образом, форвардная цена оказывается на 1 долл. выше, чем та, которая следует из уравнения для паритета цен.
Наличие конкурентного рынка для акций S&P и возможности заключения форвардных контрактов на акции S&P означает также и то, что имеются возможности для арбитражных операций. Для их совершения арбитраже? должен купить акции на спот-рынке и одновременно открыть короткую позицию, продав форвардный контакт. Таким образом, он купит акции S&P, профинансировав эту покупку посредством займа на всю сумму покупки, и одновременно застрахуется от возможных потерь, открыв короткую позицию по форвардному контракту на продажу акций S&P. В результате он ничего не получит в начале года, но зато его чистая выручка в конце года ставит 1 долл. в расчете на одну акцию. Если количество акций, с которыми совершена эта операция, составляло миллион, то общий доход от арбитража будет равен 1 миллиону долл.
В табл. 14.5 проиллюстрированы операции, необходимые для такого рода арбитража. Естественно, что арбитражеры будут стараться проводить эти операции в очень больших объемах. Их деятельность на спот- и форвардных рынках ценных бумаг вызовет колебания форвардных и спот-цен до тех пор, пока равенство в уравнении 14.6 не восстановится.
Таблица 14.9. Арбитражные операции с фьючерсными контрактами на акции
Арбитражная позиция
|
Денежные потоки на начало года
|
Денежные потоки через год
|
Продажа форвардного контракта
|
0
|
109долл -Si
|
Заем ЮОдолл
|
100 долл.
|
- 108 долл.
|
Покупка акций
|
-ЮОдолл
|
S)
|
Чистая выручка
|
0
|
1 долл
|
Как мы уже раньше видели, анализируя операции с золотом, из уравнения паритета между форвардными ценами и ценами спот не следуют какие-либо конкретные рекомендации. Это уравнение не позволяет определить форвардную цену на основе цен спот и безрисковой ставки доходности. Все три входящих в него переменных — F, S и г— задаются рынком. Если мы знаем любые две из этих величин, то в соответствии с законом единой цены можем определить, чему должна равняться третья.
рабочая книга Рассмотрим теперь вопросы ценообразования финансовых фьючерсов
;'1 Речь пойдет о поставляемых в будущем акциях, облигациях и иностран-SS J ной валюте. В отличие от таких товаров, как пшеница или золото, фи-47 нансовые активы не имеют реальной стоимости. Их не потребляют, не используют в производственных процессах, не держат ради красоты. Ценные бумаги, скорее, можно рассматривать как воплощение требований их владельцев на некие будущие доходы.
Ценные бумаги можно выпускать и хранить при очень низких затратах, что отражается в связи между их ценами слот и фьючерсными ценами. Действительно, в первом приближении мы можем полностью пренебречь этими затратами при получении уравнений паритета между форвардными ценами и ценами спот.
Рассмотрим акции гипотетического взаимного фонда S&P, портфель акций которого характеризуется широкой диверсификацией. Все дивиденды реинвестируются. Форвардный контракт на акции S&P представляет собой обещание поставить акции в некоторый определенный день по оговоренной цене поставки. Обозначим эту форвардную цену F. Сторона, открывающая длинную позицию по форвардному контракту, соглашается в день получения акций заплатить F долларов противоположной стороне, занявшей короткую позицию. Мы обозначим стоимость акции на день передачи S,.
Вместо реальной передачи акций расчеты по контракту обычно осуществляются в денежной форме. Это означает, что передачи акций не происходит, а в день платежа по контракту выплачивается только разница между F и S/. Предположим, например, что форвардная цена составляет 108 долл. за акцию. Тогда в том случае, если цена акции в день их передачи оказывается 109 долл., то сторона, занявшая длинную позицию, получает 1 долл. от стороны, занявшей короткую позицию. Однако если цена спот оказывается равной 107 долл., сторона, занявшая длинную позицию, должна выплатить 1 долл. стороне, занявшей короткую позицию.
Рассмотрим теперь связь между форвардными ценами и ценами спот для акций S&P. Предположим, что цена спот S&P составляет 100 долл., безрисковая процентная ставка равна 8% годовых, а поставка акций предусматривается через год. Какой в таком случае должна быть форвардная цена?
Отметим, что мы можем создать следующую конструкцию, по сути дублирующую получение через год акции фонда S&P. купить безрисковые бескупонные облигации номинальной стоимостью F, одновременно открыв длинную позицию по форвардному контракту для акций S&P. В срок оплаты по форвардному контракту мы погасим облигации по номинальной стоимости F и используем полученные средства для покупки акции S&P по форвардной цене.
Таким образом, форвардный контракт на акции S&P плюс бескупонная облигация образуют синтетическую акцию S&P точно с такими же характеристиками доходности, как и сами акции S&P. В соответствии с законом единой цены две эквивалентные ценные бумаги должны иметь одинаковые цены.
В табл. 14.4 показаны операции и соответствующие им выплаты, применяемые для конструирования акции с помощью бескупонных облигаций и форвардного контракта. Обратите внимание на тот факт, что акции S&P и дублирующий их портфель ценных бумаг (replicating portfolio) имеют через год одну и ту же стоимость, а именно Sj.
Таблица 14.4. Конструирование синтетических бездивидендных акций с помощью 'бескупонных облигаций и форвардного контракта на акции
Позиция Де» Покупка акций
|
южные потоки на начало года - ЮОдолл
|
Денежные потоки через год Si
|
Дублирующий портфель (синтетическая акция)
|
|
|
Открытие длинной позиции по форвардному контракту на акции
|
0
|
S,-F
|
Покупка бескупонных облигаций номинальной стоимостью F
|
-F/1,08
|
F
|
Итоговое движение денег по дублирующему портфелю
|
-F/1,08
|
Si
|
Приравнивая стоимость синтетической акции к стоимости реальной акции, получаем:
(14.5)
откуда следует, что цена спот равна приведенной стоимости форвардной цены, дисконтированной по безрисковой процентной ставке.
Проведя в равенстве 14.5 соответствующие преобразования, находим выражение для форвардной цены F в виде зависимости от текущего значения цены спот S и безрисковой процентной ставки г.
F = S х (1 + г) = 100 долл. х 1,08 = 108 долл.
В более общем случае, если срок выплаты по форвардному контракту и срок погашения для бескупонной облигации составляют Глет, получаем следующее уравнение паритета между форвардными ценами и ценами спот:
(14.6),
согласно которому форвардная цена равна будущей стоимости цены спот на которую начисляется сложный процент по безрисковой процентной ставке в течение Т лет.
Соблюдение этого равенства поддерживается арбитражными операциями. Для доказательства допустим, что оно не выполняется. Сначала предположим, что форвардная цена оказывается слишком высокой для данной безрисковой ставки и цены спот. Предположим, например, что г=0,08, S=100 долл. и форвардная цена, F, равна 109 долл. вместо 108 долл. Таким образом, форвардная цена оказывается на 1 долл. выше, чем та, которая следует из уравнения для паритета цен.
Наличие конкурентного рынка для акций S&P и возможности заключения форвардных контрактов на акции S&P означает также и то, что имеются возможности для арбитражных операций. Для их совершения арбитраже? должен купить акции на спот-рынке и одновременно открыть короткую позицию, продав форвардный контакт. Таким образом, он купит акции S&P, профинансировав эту покупку посредством займа на всю сумму покупки, и одновременно застрахуется от возможных потерь, открыв короткую позицию по форвардному контракту на продажу акций S&P. В результате он ничего не получит в начале года, но зато его чистая выручка в конце года ставит 1 долл. в расчете на одну акцию. Если количество акций, с которыми совершена эта операция, составляло миллион, то общий доход от арбитража будет равен 1 миллиону долл.
В табл. 14.5 проиллюстрированы операции, необходимые для такого рода арбитража. Естественно, что арбитражеры будут стараться проводить эти операции в очень больших объемах. Их деятельность на спот- и форвардных рынках ценных бумаг вызовет колебания форвардных и спот-цен до тех пор, пока равенство в уравнении 14.6 не восстановится.
Таблица 14.9. Арбитражные операции с фьючерсными контрактами на акции
Арбитражная позиция
|
Денежные потоки на начало года
|
Денежные потоки через год
|
Продажа форвардного контракта
|
0
|
109долл -Si
|
Заем ЮОдолл
|
100 долл.
|
- 108 долл.
|
Покупка акций
|
-ЮОдолл
|
S)
|
Чистая выручка
|
0
|
1 долл
|
Как мы уже раньше видели, анализируя операции с золотом, из уравнения паритета между форвардными ценами и ценами спот не следуют какие-либо конкретные рекомендации. Это уравнение не позволяет определить форвардную цену на основе цен спот и безрисковой ставки доходности. Все три входящих в него переменных — F, S и г— задаются рынком. Если мы знаем любые две из этих величин, то в соответствии с законом единой цены можем определить, чему должна равняться третья.