7.4.4. Экспликативные (« объясняющие») модели
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
С научной точки зрения, « объективные» и « аналитические» методы являются самыми мощными. Они основываются на создании экспликативных математических моделей, которые позволяют имитировать рыночные ситуации в рамках альтернативных сценариев. В своей концептуальной основе математическое моделирование очень близко описанным ранее экспертным методам: требуется установить причинную структуру, разработать один или множество сценариев и для каждого отобранного сценария вывести оценку вероятного спроса. Отличие метода заключается в том, что причинная структура устанавливается и проверяется экспериментально, в условиях, поддающихся объективному наблюдению и измерению.
Определение причинной структуры
Определение причинной (казуальной) структуры исследуемого явления - исходная точка математического моделирования. Рассмотрим случай торговой фирмы, которая хочет укрепить приверженность своей клиентуры и ищет наиболее эффективные средства для достижения этого результата. Возникают следующие вопросы.
— Каковы факторы, определяющие имидж торговой марки продавца?
— Какое влияние оказывает этот имидж на частоту посещения магазинов?
— Какие иные факторы определяют удовлетворенность клиентов?
— В какой степени уровень удовлетворенности влечет долгосрочную приверженность к марке?
Как и в других аналогичных случаях, мы имеем здесь последовательность причинных связей, где первая зависимая переменная (имидж) становится причинной переменной для второй зависимой переменной (частота и удовлетворенность), которая в свою очередь определяет долгосрочную приверженность.
Другими словами, речь идет о наборе гипотез, основанных на понимании поведения потребителей при покупке и априори вытекающих из теории поведения. Этот набор гипотез должен затем быть принят (или отвергнут) аналитиком на основе наблюдений. В случае подтверждения модель может применяться для целей управления.
Модели с системой уравнений
Если изучаемое явление слишком сложно для описания его единственным уравнением, аналитик должен выбрать такой метод оценки, который позволяет учитывать взаимозависимость переменных.
В качестве примера рассмотрим проблему измерения влияния рекламы на долю рынка для марки потребительского товара, продаваемого через широкую сбытовую сеть. Предыдущие исследования эффективности рекламы показали, что она непосредственно влияет на уровень узнавания марки и на поведение продавцов, ответственных за сбыт марки в сети. Таким образом, причинная структура явления может быть представлена схемой по рис. 7.13.
Здесь имеются три функциональные связи:
поведение дистрибьютора (у1) определяется торговой наценкой, которую он получает (х1), и интенсивностью рекламных усилий в отношении марки (х2);
поведение продавцов (у2) определяется поведением дистрибьюторов (у1), интенсивностью рекламы (х2) и давлением конкуренции (х3);
уровень доли рынка (у3) определяется поведением дистрибьюторов (у1), поведением продавцов (у2) и относительным уровнем цены марки (x4).
Пусть
Тогда подлежащие определению структурные уравнения примут вид:
Мощность современных расчетных методов достаточна для решения этой системы уравнений.
Моделирование динамики
Пеетерс (Peeters, 1992) разработал динамическую модель оценки спроса на большегрузные транспортные средства на европейском рынке. Выбрана следующая функция:
Спрос = F (производство, процент, цена, ошибка),
Где спрос (Q) - ежемесячный объем заказов на грузовики грузоподъемностью 15 т и выше, производство - месячный индекс промышленного производства, процент - гарантированная месячная учетная ставка процента по государственным обязательствам, цена - индекс цены на дизельное топливо.
Используются данные после сезонной коррекции, представленные в логарифмическом масштабе. Рассматриваемая модель является динамической; она следующим образом описывает структуру реакции рынка:
переменная « производство» (Пр) вводится в форме модели с запаздыванием, описываемым убывающим геометрическим распределением с коэффициентом переноса при переходе от t к t-k, равным 0, 4557 (модель Койка (Koyck));
переменная «процент» входит в модель с запаздыванием, равным восьми месяцам; это указывает на то, что время проявления эффекта изменения ставки процента составляет восемь месяцев (уровень задержки был определен экспериментально);
переменная «цена» аналогичным образом является запаздывающей на восемь месяцев;
член « погрешность» также имеет динамическую структуру в том смысле, что представляет собой взвешенную сумму трех погрешностей по указанным переменным (U) и чисто случайной составляющей (е).
Уравнение спроса, полученное числовым методом по критерию максимального правдоподобия, имеет вид:
Качество модели оценивается с помощью обычных статистических показателей. Коэффициент детерминированности равен в данном случае 0, 865. Все значения t-критериев, измеряющих точность коэффициентов регрессии, являются значимыми на уровне 5% и выше.
Поскольку речь идет об эластичности, коэффициенты допускают прямую интерпретацию. Так, например:
кумулятивный общий эффект (сумма эффектов запаздывания) переменной « промышленное производство» равен 3, 2114; это означает, что рост промышленного производства на 1% приводит к росту числа заказов на 3, 2%;
эффект понижения ставки учетного процента на 10% приводит, с восьмимесячным запаздыванием, к повышению спроса на грузовики на 1, 9%;
эффект повышения цены дизельного топлива на 10% через восемь месяцев приводит к падению спроса на грузовики на 4, 8%.
Сравнение наблюдаемых и расчетных объемов продаж, рассчитанных с использованием модели, а также прогнозируемые объемы продаж приведены на рис. 7.14.
Ограничения количественных экспликативных моделей
Эффективность данного метода основана на том, что модель становится инструментом выявления и исследования многочисленных ситуаций и переменных, которые человеческий ум при всем своем воображении проанализировать не в силах.
Необходимо, однако, учитывать, что данный подход осмыслен лишь до тех пор, пока выявленная причинная структура остается стабильной. Следовательно, прогноз на базе экспликативной модели также подразумевает экстраполяцию, но уже второго порядка. В условиях глубоких и быстрых мутаций среды математическая модель не в состоянии предсказать влияние изменения, которое изначально не было в ней учтено. В отличие от эксперта математическая модель неспособна к импровизации и не может приспособиться к глубоким изменениям среды.
Большинство прогнозных ошибок связано с тем, что в момент формулирования прогноза в более или менее явной форме подразумевалось, что существующие тенденции сохранятся в будущем, что редко оправдывается в реальной экономической и общественной жизни.
В 1983-1984 г. на американский рынок были введены 67 новых моделей персональных компьютеров, и большинство фирм рассчитывало на взрывной рост этого рынка. По прогнозам, которые давали в то время маркетинговые фирмы, число установленных компьютеров должно было составить от 27 до 28 миллионов в 1988 г. Однако к концу 1986 г. было поставлено только 15 миллионов, поскольку условия использования компьютеров радикально изменились, а этого никто не предвидел (Barnett, 1988, р. 28).
История может становиться ненадежным проводником по мере того, как экономика приобретает все более международный характер и все в большей степени подвергается крупной технологической перестройке. В связи с этим необходимо в первую очередь развивать способности предвидения, что подразумевает хорошее знание ключевых факторов и оценку чувствительности фирмы к внешним угрозам.
С научной точки зрения, « объективные» и « аналитические» методы являются самыми мощными. Они основываются на создании экспликативных математических моделей, которые позволяют имитировать рыночные ситуации в рамках альтернативных сценариев. В своей концептуальной основе математическое моделирование очень близко описанным ранее экспертным методам: требуется установить причинную структуру, разработать один или множество сценариев и для каждого отобранного сценария вывести оценку вероятного спроса. Отличие метода заключается в том, что причинная структура устанавливается и проверяется экспериментально, в условиях, поддающихся объективному наблюдению и измерению.
Определение причинной структуры
Определение причинной (казуальной) структуры исследуемого явления - исходная точка математического моделирования. Рассмотрим случай торговой фирмы, которая хочет укрепить приверженность своей клиентуры и ищет наиболее эффективные средства для достижения этого результата. Возникают следующие вопросы.
— Каковы факторы, определяющие имидж торговой марки продавца?
— Какое влияние оказывает этот имидж на частоту посещения магазинов?
— Какие иные факторы определяют удовлетворенность клиентов?
— В какой степени уровень удовлетворенности влечет долгосрочную приверженность к марке?
Как и в других аналогичных случаях, мы имеем здесь последовательность причинных связей, где первая зависимая переменная (имидж) становится причинной переменной для второй зависимой переменной (частота и удовлетворенность), которая в свою очередь определяет долгосрочную приверженность.
Другими словами, речь идет о наборе гипотез, основанных на понимании поведения потребителей при покупке и априори вытекающих из теории поведения. Этот набор гипотез должен затем быть принят (или отвергнут) аналитиком на основе наблюдений. В случае подтверждения модель может применяться для целей управления.
Модели с системой уравнений
Если изучаемое явление слишком сложно для описания его единственным уравнением, аналитик должен выбрать такой метод оценки, который позволяет учитывать взаимозависимость переменных.
В качестве примера рассмотрим проблему измерения влияния рекламы на долю рынка для марки потребительского товара, продаваемого через широкую сбытовую сеть. Предыдущие исследования эффективности рекламы показали, что она непосредственно влияет на уровень узнавания марки и на поведение продавцов, ответственных за сбыт марки в сети. Таким образом, причинная структура явления может быть представлена схемой по рис. 7.13.
Здесь имеются три функциональные связи:
поведение дистрибьютора (у1) определяется торговой наценкой, которую он получает (х1), и интенсивностью рекламных усилий в отношении марки (х2);
поведение продавцов (у2) определяется поведением дистрибьюторов (у1), интенсивностью рекламы (х2) и давлением конкуренции (х3);
уровень доли рынка (у3) определяется поведением дистрибьюторов (у1), поведением продавцов (у2) и относительным уровнем цены марки (x4).
Пусть
Тогда подлежащие определению структурные уравнения примут вид:
Мощность современных расчетных методов достаточна для решения этой системы уравнений.
Моделирование динамики
Пеетерс (Peeters, 1992) разработал динамическую модель оценки спроса на большегрузные транспортные средства на европейском рынке. Выбрана следующая функция:
Спрос = F (производство, процент, цена, ошибка),
Где спрос (Q) - ежемесячный объем заказов на грузовики грузоподъемностью 15 т и выше, производство - месячный индекс промышленного производства, процент - гарантированная месячная учетная ставка процента по государственным обязательствам, цена - индекс цены на дизельное топливо.
Используются данные после сезонной коррекции, представленные в логарифмическом масштабе. Рассматриваемая модель является динамической; она следующим образом описывает структуру реакции рынка:
переменная « производство» (Пр) вводится в форме модели с запаздыванием, описываемым убывающим геометрическим распределением с коэффициентом переноса при переходе от t к t-k, равным 0, 4557 (модель Койка (Koyck));
переменная «процент» входит в модель с запаздыванием, равным восьми месяцам; это указывает на то, что время проявления эффекта изменения ставки процента составляет восемь месяцев (уровень задержки был определен экспериментально);
переменная «цена» аналогичным образом является запаздывающей на восемь месяцев;
член « погрешность» также имеет динамическую структуру в том смысле, что представляет собой взвешенную сумму трех погрешностей по указанным переменным (U) и чисто случайной составляющей (е).
Уравнение спроса, полученное числовым методом по критерию максимального правдоподобия, имеет вид:
Качество модели оценивается с помощью обычных статистических показателей. Коэффициент детерминированности равен в данном случае 0, 865. Все значения t-критериев, измеряющих точность коэффициентов регрессии, являются значимыми на уровне 5% и выше.
Поскольку речь идет об эластичности, коэффициенты допускают прямую интерпретацию. Так, например:
кумулятивный общий эффект (сумма эффектов запаздывания) переменной « промышленное производство» равен 3, 2114; это означает, что рост промышленного производства на 1% приводит к росту числа заказов на 3, 2%;
эффект понижения ставки учетного процента на 10% приводит, с восьмимесячным запаздыванием, к повышению спроса на грузовики на 1, 9%;
эффект повышения цены дизельного топлива на 10% через восемь месяцев приводит к падению спроса на грузовики на 4, 8%.
Сравнение наблюдаемых и расчетных объемов продаж, рассчитанных с использованием модели, а также прогнозируемые объемы продаж приведены на рис. 7.14.
Ограничения количественных экспликативных моделей
Эффективность данного метода основана на том, что модель становится инструментом выявления и исследования многочисленных ситуаций и переменных, которые человеческий ум при всем своем воображении проанализировать не в силах.
Необходимо, однако, учитывать, что данный подход осмыслен лишь до тех пор, пока выявленная причинная структура остается стабильной. Следовательно, прогноз на базе экспликативной модели также подразумевает экстраполяцию, но уже второго порядка. В условиях глубоких и быстрых мутаций среды математическая модель не в состоянии предсказать влияние изменения, которое изначально не было в ней учтено. В отличие от эксперта математическая модель неспособна к импровизации и не может приспособиться к глубоким изменениям среды.
Большинство прогнозных ошибок связано с тем, что в момент формулирования прогноза в более или менее явной форме подразумевалось, что существующие тенденции сохранятся в будущем, что редко оправдывается в реальной экономической и общественной жизни.
В 1983-1984 г. на американский рынок были введены 67 новых моделей персональных компьютеров, и большинство фирм рассчитывало на взрывной рост этого рынка. По прогнозам, которые давали в то время маркетинговые фирмы, число установленных компьютеров должно было составить от 27 до 28 миллионов в 1988 г. Однако к концу 1986 г. было поставлено только 15 миллионов, поскольку условия использования компьютеров радикально изменились, а этого никто не предвидел (Barnett, 1988, р. 28).
История может становиться ненадежным проводником по мере того, как экономика приобретает все более международный характер и все в большей степени подвергается крупной технологической перестройке. В связи с этим необходимо в первую очередь развивать способности предвидения, что подразумевает хорошее знание ключевых факторов и оценку чувствительности фирмы к внешним угрозам.