6.3. Задачи для самостоятельного решения
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61
Расчетные задачи
1. Портфель состоит из двух пакетов акций стоимостью 3000
тыс. руб. и 2000 тыс руб. Ожидаемая доходность по первому пакету
составляет 12%, а по второму - 16%. Какова ожидаемая доходность
портфеля в целом?
2. В начале года инвестор владел четырьмя видами ценных бумаг
в следующих количествах и со следующими текущими и ожидаемыми
к концу года ценами (табл. 6.5).
Таблица 6.5
Ценная бумага Количество
акций
Текущая цена,
долл.
Ожидаемая цена к
концу года, долл.
А 100 50 50
В 200 35 40
С 50 25 50
D 100 100 ПО
Какова ожидаемая доходность этого портфеля за год?
3. Инвестор желает приобрести 10-летние бескупонные облигации
сроком на 1 год с погашением по номиналу. Согласно
структуре процентных ставок, годовая доходность к погашению
ожидается на уровне 7%, а ее волатильность (СКО) - 15%. Опираясь
на нормальный закон распределения доходности, получить
следующие оценки:
а) найти интервал, внутри которого сосредоточены 98% возможных
уклонений итоговой за год доходности г от ее среднего
значения (98%-й доверительный интервал);
б) при том же уровне значимости (98%) определить диапазон
возможных годовых приростов А (выигрышей или потерь) начальных
вложений в размере 1 млн руб.;
в) как изменится доверительный с тем же уровнем значимости
интервал по доходности и приростам капитала для диапазона
дальновидности инвестора, равного 30 дням;
г) оцените величину максимально возможных потерь (VAR)
при условии, что инвестор пренебрегает вероятностями неблагоприятных
исходов ниже 0,01.
4. При вложении капитала в мероприятие А в 20 случаях из
200 была получена прибыль в 25 тыс. руб., в 80 случаях — 30 тыс.
руб., в 100 случаях — 40 тыс. руб. При вложении капитала в мероприятие
В в 144 случаях из 240 была получена прибыль 30 тыс.
руб., в 72 случаях — 35 тыс. руб., в 24 случаях — 45 тыс. руб. Выбрать
вариант вложения капитала:
а) по критерию средней прибыли;
б) по критерию колеблемости прибыли;
в) по критерию относительной колеблемости прибыли
5. Выбрать наименее рискованное направление инвестиций
из двух возможных вариантов:
а) собственные средства инвестора — 5 млн руб., максимально
возможная сумма убытков — 3,5 млн руб.;
б) собственные средства инвестора — 30 млн руб., максимально
возможная сумма убытков — 12 млн руб.
6. Инвестор выбирает между двумя акциями Aw В. Каждая из
них по-своему откликается на возможные рыночные ситуации,
достигая с известными вероятностями определенных значений
доходности (табл. 6.6).
Таблица 6.6
Акция Вероятность Доходность Вероятность Доходность
Л 0,5 20% 0,5 10%
В 0,99 15,1% 0,01 5,1%
Какую акцию выберет не склонный к риску инвестор?
7. Предположим, что на рынке могут возникнуть только два
исхода и на каждый из них акции А и В откликаются неслучайным
образом. Вероятности этих исходов и соответствующих им
значений доходности заданы табл. 6.7.
Таблица 6.7
Акция
Исход 1 Исход 2
Вероятность Доходность Вероятность Доходность
А 0,2 5% 0,8 1,25%
В 0,2 - 1% 0,8 2,75%
Определить:
а) ожидаемые доходности и риски (стандартные отклонения)
этих акций;
б) коэффициент корреляции между доходностями;
в) какую акцию выберет инвестор, максимизирующий вероятность
неразорения, учитывая, что инвестируются заемные
средства, взятые под ставку 1,5%;
г) как распределить вложения, чтобы получить безрисковую
комбинацию этих акций — портфель с не зависящей от исхода
эффективностью.
8. Инвестор вложил 60% своего капитала в акцию А, а оставшуюся
часть — в акцию 5. Риски этих акций составляют соответственно
10 и 20%. Чему равен риск портфеля, если:
а) доходности этих бумаг находятся в полной прямой корреляции;
б) доходности некоррелированы;
в) имеет место положительная статистическая связь с коэффициентом
корреляции 0,5.
9. Портфель состоит из активов А и В. Доля актива А — 40%,
актива В — 60%. Дисперсии активов
аА
2 = 0,0012184, ав
2 = 0,000987.
Коэффициент корреляции:
гАВ = 0,0008765.
Чему равен риск портфеля?
10. Используя Excel, найти оптимальный портфель Маркови-
ца требуемой доходности тр = 15% для трех некоррелированных
ценных бумаг, эффективности и риски которых заданы следующими
парами значений: 4, 10; 10, 40; 40, 80.
11. Для формирования портфеля ценных бумаг можно использовать
три вида акций, которые имеют следующие характеристики
(табл. 6.8).
Таблица 6.8
Ожидаемая доходность
т{ = 12% т 2 = 10% т 3 = 15%
Риск а, = 15% а2=8% а3 = 18%
Коэффициенты
корреляции
/-12=0,35 /-13=0,19 г2 3=0,1
С помощью компьютера составить 11 портфелей минимального
риска и требуемой доходности тп = 10 + 0,5(я — 1), п = 1, 2,
11. Затем нанести портфели, как точки, на плоскость «доходность
— риск» и построить график траектории эффективных
портфелей.
12. Инвестор может составить портфель из трех видов ценных
бумаг. Их эффективности являются случайными величинами,
имеющими следующие математические ожидания и стандартные
отклонения:
тх = 15%, а, = 5%; т2 = 25%, а 2 = 7%; т3 = 20%; а 3 = 6%.
Также известна корреляционная матрица этих эффективнос-
тей ((гу)) (табл. 6.9).
Таблица 6.9
Номер актива 1 2 3
1 1 0,8 0
2 0,8 1 -0,2
3 0 -0,2 1
Инвестор имеет возможность получать и предоставлять займы
по одной и той же безрисковой ставке г0=12%, а моделирую-
щая его поведение функция полезности дохода U(R) = 3R — О, IR .
Определить портфель Тобина, учитывающий, наряду с рисковыми
активами, возможности использования инвестором безрискового
процента.
13. Компания финансируется на 40% за счет заемного капитала
по безрисковой ставке в 10%. Акции компании имеют коэффициент
р, равный 0,5. Ожидаемая доходность рыночного портфеля
составляет 18%. Определить стоимость капитала компании.
14. Полная рыночная стоимость обыкновенных акций (собственный
капитал) компании оценивается в 6 млн долл.; общая
стоимость заемного капитала составляет 4 млн долл. Финансовые
аналитики получили оценку «бета» вклада акций компании на
уровне 1,5. Кроме того, известно, что ожидаемая премия за риск
рыночного портфеля равна 9%. Данная компания привлекает заемный
капитал под безрисковую ставку в 8%. Определить:
а) ожидаемую доходность акций этой компании;
б) р вклада ее активов;
в) стоимость капитала компании;
г) ставку дисконтирования для получения оценок эффективности
проектов, предназначенных для расширения действующего
производства;
д) ставку дисконтирования для оценки эффективности нового,
задуманного компанией инвестиционного проекта с коэффициентом
р = 1,2.
15. Сформировать портфель Тобина максимальной эффективности
и риска, не более заданного, из трех видов ценных бумаг:
безрисковых с эффективностью 2 и некоррелированных рисковых
ожидаемой эффективности 4 и 10 и рисками'2 и 4. Каковы соотношения
доли бумаг в рисковой части оптимального портфеля?
16. Имеются следующие данные об ожидаемых доходах и стандартных
отклонениях восьми рисковых портфелей (табл. 6.10).
Таблица 6.10
Портфель А Б В Г Д Е Ж 3
Ожидаемый доход, г, % 10 12,5 15 16 17 18 18 20
Стандартное отклонение, а, % 23 21 25 29 29 32 35 45
Используя графическое представление этих портфелей в осях
(/-, а ) , требуется ответить на следующие вопросы:
а) пять из этих портфелей эффективны, три - нет. Какие
портфели неэффективны?
б) допустим, что вы также можете брать кредиты и предоставлять
займы по ставке 12%. Какой из приведенных портфелей является
лучшим в этой ситуации?
в) предположим, вы готовы принять стандартное отклонение,
равное 25%. Какую максимальную ожидаемую доходность вы можете
получить при условии, что у вас нет возможности брать кредиты
или предоставлять займы?
г) как изменится ваша стратегия, если у вас появится возможность
кредитования и заимствования по ставке 12%. Вы по-прежнему
готовы принять 25%-ный риск, но стремитесь получить
максимальную ожидаемую доходность? Чему равен выигрыш по
сравнению с п. «в»?
17. Инвестор вложил 60% своих денег в акции Л, а остальные
— в акции В. Он оценивает перспективы для себя следующим образом
(табл. 6.11).
Таблица 6.11
Показатель
Акция
Л В
Ожидаемая доходность, % 15 20
Стандартное отклонение, % 20 22
Корреляция между доходнос-
тями
0,5
Определить:
а) каковы ожидаемая доходность и стандартное отклонение
портфеля?
б) как изменился бы ваш ответ, если бы коэффициент корреляции
равнялся 0 или —0,5?
в) портфель инвестора лучше или хуже портфеля, полностью
состоящего из акций А, или об этом невозможно судить?
18. Случайная доходность ценной бумаги имеет нормальное
распределение с ожидаемым значением E(R) = 14% и риском
15%. Облигации государственного займа дают безрисковую доходность
5%. Найти вероятность того, что вложение в эту бумагу
будет выгоднее, чем покупка облигаций.
19. Какова «бета» для каждой акции со следующими данными
об ожидаемой доходности (табл. 6.12)?
Таблица 6.12
Акция
Ожидаемая доходность акции
при рыночной доходности
- 10%
Ожидаемая доходность акции
при рыночной доходности
+ 10%
А 0 + 20
Б - 2 0 + 20
В - 3 0 0
Г + 15 + 15
Д + 10 - 10
Аналитические задачи
1. Пусть А — вклад в рискованный актив с вероятностью полной
утраты ра и с доходностью га при его сохранении. Требуется:
а) получить формулы математического ожидания и риска
(СКО) случайной доходности г подобного вложения;
б) определить, как изменятся формулы п. «а», если вместо
риска актива будет иметь место риск процентов: вклад возвращается
в полном объеме, а проценты теряются с вероятностью рп
или начисляются по ставке га.
2. Сформировать портфель Тобина минимального риска из
двух видов ценных бумаг: безрисковых с эффективностью 2 и
рисковых с ожидаемой эффективностью 10 и риском 5. Найти зависимость
эффективности портфеля от его риска.
3. В модели САРМ известны эффективности т{, т2 и р ь (32
двух ценных бумаг. Как найти безрисковую ставку г0 и эффективность
рынка тс1
4. Имеются два актива со случайными эффективностями Rl9
R2. Возможные значения этих эффективностей и их вероятности
сведены в табл. 6.13).
Таблица 6.13
Вероятность 0,2 0,8
Л, 5% 1,25%
* 2 - 1% 2,75%
Инвестор руководствуется функцией полезности дохода
U(R) = 1,2 R - 0 , 1 R2
и формирует составной актив исходя из критерия максимизации
ожидаемой полезности. Определить оптимальные пропорции
этого актива и его характеристики тр, ар.
5. Хорошо диверсифицированный портфель акций, сформированный
на капитале К, имеет коэффициент бета, равный
величине рп . Владелец портфеля намерен включить в него еще
один вид акций с коэффициентом р = РА и готов инвестировать
для этого сумму / = ХК, не превышающую 10% от первоначальной
инвестиции К. Получить формулу относительного изменения
в результате добавления акций А портфельного риска
(СКО) в зависимости от доли X и количественных характеристик
рп и рА.
6. Функция полезности инвестора в зависимости от изменения
дохода характеризуется следующим свойством: полезность
малого выигрыша Ах пропорциональна этому выигрышу и обратно
пропорциональна наличному капиталу х. Записать дифференциальное
уравнение, которому должна удовлетворять эта функция
и, решив его, найти ее вид.
7. Кредит Р выдан под ставку сложного процента j на срок п.
Чему равна величина дюрации D потока погашающих платежей
при ставке дисконтирования, равной кредитному проценту у, для
схемы:
а) равных процентных выплат;
б) равных срочных уплат?
8. Получить формулу расчета показателя дюрации простой
годовой ренты срока п с выплатами R в конце каждого года.
Ситуационные задачи
1. Пусть известны вектор ожидаемой доходности и матрица
ковариации трех активов (ценных бумаг):
10,1 210 60 0
MR = 7,8 VC = 60 90 0
5,0 0 о ! 0
Известно, что рискованный портфель гражданина Сидорова
разбит пополам на два рискованных актива. Определить:
а) какая из трех ценных бумаг является безрисковым активом?
Почему?
б) чему равна ожидаемая доходность и стандартное отклонение
всего портфеля, если безрисковый актив составляет 25% всего
портфеля?
2. Ваша эксцентричная тетя оставила вам в наследство акции
компании Boeing на 50 ООО долл. и 50 ООО долл. наличными. К сожалению,
она потребовала не продавать акции в течение одного
года, а все деньги вложить в один из видов акций компаний,
представленных в табл. 6.14. Какой портфель был бы наиболее
надежным при выполнении этих условий?
Таблица 6.14
Коэффициент корреляции компании
Стандартное
отклонение,
%
Компания
Boeing
&о
и
Kodak
Georgia
Pacific
McDonnell
Douglas
Polaroid
Thermo
Electron
Boeing 1 0,65 0,45 0,34 0,64 0,4 0,42 28
Citicorp 1 0,46 0,48 0,42 0,58 0,31 29
Kodak 1 0,50 0,50 0,41 0,23 25
Georgia 1 0,50 0,42 0,40 29
Pacific
McDon 1 0,21 0,37 24
nell
Douglas
Polaroid 1 0,33 39
Thermo 1 42
Electron
3. Андрею Кутукову нравится игра «Времена года», которую
ежеквартально проводит казино «Шанс». Согласно его прикидкам,
успех в игре имеет вероятность 0,08 и позволяет удесятерить
вложенный капитал; при проигрыше деньги «теряются» (достаются
казино). Объявление результатов игры и выплаты победите-
лям производятся в конце каждого квартала перед началом очередного
тура. Чтобы любимое развлечение не стало разорительным,
он решил параллельно с игрой часть х д денег класть на трехмесячный
депозит под безрисковую ставку гд = 10% (в расчете на
квартал).
Определить пропорцию вложений в игру и на депозит с учетом
требования сохранить «в среднем» вложенный капитал.
4. Иванову надоело держать деньги в квартирных тайниках, и
он решил вложиться в акции А, В с характеристиками тА = 12%,
а А = 15%, тв = 28%, а в = 30% и коэффициентом корреляции
ГАВ ~ 0,1. Сторонник осторожных решений и умеренных
действий, он готов довольствоваться ожидаемой доходностью
тр = 14%, лишь бы надежность ее получения была как можно выше.
Требуется:
а) записать (алгебраически) модель оптимальной по критерию
риска диверсификации вложения при условии, что ради
снижения риска Иванов предполагает часть денег хранить наличностью
в том же, что и раньше, укромном месте;
б) используя Excel, найти оптимальные пропорции вложения
и его риск;
в) определить, куда и сколько следует вложить, если накопленная
Ивановым сумма равна 100 000 руб.
5. Менеджер отвечает за управление портфелем пенсионного
фонда, в его распоряжении 990 млн руб., которые он должен поделить
между рыночным портфелем и безрисковыми ценными
бумагами. Аналитик, консультирующий менеджера, уверен, что в
следующем году по безрисковым ценным бумагам можно получить
доходность 0,08, а возможные ставки годовой доходности
рыночного портфеля и их вероятности будут такими, как показано
ниже:
Какой должна быть доля каждой из компонент, чтобы ожидаемая
доходность инвестиций пенсионного фонда составляла
Доходность Вероятность
0,30
0,20
0,10
-0,10
0,30
0,40
0,25
0,05
15%? Чему будет равен риск такого портфеля (среднеквадрати-
ческое отклонение его доходности)?
6. Врач, вышедший на пенсию, предполагает покупать только
долговые ценные бумаги и акции рыночного портфеля. Как инвестор
он хочет быть уверенным в том, что даже если доходность
рыночного портфеля окажется ниже нормального уровня тс =
= 14% на величину, соответствующую двум среднеквадратичес-
ким отклонениям а с = 12%, доходность его портфеля будет не менее
5%. При этом вероятностями худших исходов он пренебрегает.
Определить:
а) какой портфель вы бы ему порекомендовали, если ставка
безрискового процента по долговым бумагам составляет 8%;
б) вероятности неблагоприятных исходов, которыми пренебрегает
инвестор (аппроксимируется распределение случайной
доходности рынка нормальным законом).
7. «Зачем покупать товар, когда можно купить его производство
», — решил владелец процветающей торговой компании господин
Широков. Через год и в обозримой перспективе эта сделка
даст ему 0,3 млн руб. ежегодно, но каков риск? Если оценить
этот проект как безрисковый, а его риск окажется таким же, что
и у рынка ценных бумаг, то много ли переплатит господин Широков,
покупая эту фирму?
Решить задачу при условии, что безрисковая ставка г0 = 10%,
а ожидаемая доходность рынка тс = 20%.
8. Получив наследство, Николай почти все деньги вложил в
ценные бумаги. Его портфель составлен из инвестиции в рискованный
портфель (дающий 12%-ную ожидаемую доходность и
25%-ные стандартное отклонение) и в безрисковый актив (дающий
7%-ную доходность). В целом портфель имеет стандартное
отклонение 20%. Может ли Николай оценить ожидаемую доходность
портфеля, и если да, то чему эта доходность равна?
Тесты
1. Из двух акций А и В первая отрицательно коррелируется с
другими акциями, доступными для инвестирования на рынке
ценных бумаг. Расположить в порядке возрастания равновесные
доходности этих акций тАу тви ставку безрискового процента г0
1)г0,тА,тв;
2) г0 , тв, тА;
3) mA9 r0 , тв\
4) все ответы неверны.
2. Фирма оценивает свои инвестиционные проекты по ставке
сравнения, равной стоимости капитала (WACC). Что можно сказать
о высокорисковых проектах? Будут они переоценены или
недооценены при таком подходе:
1) переоценены;
2) недооценены;
3)исходной информации недостаточно.
3. Рассмотреть четыре акции со следующими ожидаемыми
доходностями и стандартными отклонениями (табл. 6.15).
Таблица 6.15
Акция Ожидаемая доходность,
%
Стандартное
отклонение, %
А 15 12
В 14 7
С 13 8
D 16 11
Есть ли среди этих акций те, от которых инвестор, избегающий
риска, заведомо откажется:
1) таких акций нет;
2) А;
3) В;
4) С;
5)D.
4. Согласно правилу оценки долгосрочных активов (уравнение
равновесного рынка), акциям с коэффициентом р свойственны
те же рыночный риск и ожидаемая доходность, что и:
1) портфелю, состоящему из р инвестиций в казначейские
векселя и (1 - Р) инвестиций в рыночные ценные бумаги;
2) портфелю, состоящему из Р инвестиций в рыночные ценные
бумаги и (1 — Р) инвестиций в казначейские векселя;
3) портфелю, состоящему наполовину из рыночных ценных
бумаг и наполовину из казначейских векселей;
4) такого портфеля, кроме пакета этих акций, нет.
5. В какой из ситуаций можно достичь максимального сокращения
риска вложений, если их возможности ограничиваются
двумя акциями и операции коротких продаж не производятся?
1) доходности акций некоррелированы;
2) имеет место полная отрицательная корреляция;
3) корреляция положительна;
4) корреляция отрицательна;
5) имеет место полная положительная корреляция.
6. Ожидаемую доходность акции т часто задают в виде линейной
функции с коэффициентом бета (Р) от ожидаемой доходности
рынка (гт):
т = а + $гт.
Согласно модели ценообразования на рынке капиталовложений
(САРМ) равновесному состоянию этого рынка будет отвечать:
1 ) а = 0;
2) а = г0 (ставка безрискового процента);
3 ) a = ( l - p ) r 0;
4 ) a = ( l - r 0 ) ;
5) ни один из приведенных выше вариантов не верен.
7. Портфель содержит акции 10 видов с равными по каждому
виду вложениями капитала. Половина этих акций имеет коэффициент
р = 1,2, а у остальных — р = 1,4. Чему равен этот показатель
(«бета» вклада) для всего портфеля?
1)1,3;
2) больше, чем 1,3, потому что портфель не полностью диверсифицирован;
3) меньше, чем 1,3, потому что диверсификация уменьшает
величину, «бета» вклада;
4) имеющейся информации недостаточно.
8. Представлены три ценовых состояния рынка (конъюнктуры)
с двумя видами акций А и Б (табл. 6.16).
Таблица 6.16
Акция
Конъюнктура
1 2 3
А 8 11 9
Б 12 9 13
Наилучшей из всех является конъюнктура:
1) первая;
2) вторая;
3) третья;
4) имеющейся информации недостаточно.
9. Портфель инвестора содержит меньше различных акций,
чем рыночный портфель. Риск этого пюртфеля будет ниже, чем
риск рыночного портфеля, если:
1) портфель хорошо диверсифицирован;
2) «бета» портфеля меньше единицы;
3) портфель хорошо диверсифицирован и его р > 1;
4) портфель хорошо диверсифицирован и его Р < 1;
5) ни один из приведенных выше вариантов ответов неверен.
10. Инвестиционный портфель предприятия представляет совокупность:
1) финансируемых предприятием инвестиционных проектов;
2) принятых к эксплуатации объектов завершенного строительства;
3) ценных бумаг в фондовом портфеле предприятия;
4) эмитированных предприятием акций;
5) эмитированных предприятием облигаций.
11. Компания решает, выпускать ли ей акции, чтобы привлечь
деньги для финансирования инвестиционного проекта, риск которого
равен рыночному, а ожидаемая доходность — 20%. Если
безрисковая ставка равна 10% и ожидаемая доходность рыночных
ценных бумаг (рыночного портфеля) - 15%, компании следует
выпустить акции:
1) при «бета» акций компании не больше 2,0;
2) при «бета» акций компании не меньше 2,0;
3) при любом значении «бета».
12. Вы инвестировали 1 млн руб. в хорошо диверсифицированный
портфель акций. В настоящее время вы получили еще
200 000 руб. (0,2 млн руб.) в наследство. Какое из следующих
действий обеспечит вам наиболее надежный доход от вашего
портфеля:
1) инвестирование 200 тыс. руб. в государственные облигации
(их р = 0);
2) инвестирование 200 тыс. руб. в акции с р = 1;
3) инвестирование 200 тыс. руб. в акции с р = -0,25?
13. Пусть ставка дисконтирования г составляет 100%. В какой
последовательности, начиная с конца первого периода, следует
расположить два платежа (4; 16), чтобы средний срок выплаты
был наименьшим? Изменится ли ответ при нулевой денежной
оценке времени, т.е. для значения г = 0? При какой расстановке
платежей риск процентной ставки будет выше?
0(16; 4);
2) (4; 16);
3) изменится;
4) не изменится;
5) (16; 4);
6) (4; 16)?
14. Портфель А имеет следующую структуру: облигации государственного
займа — 12%, простые акции крупных нефтяных
компаний — 15%, привилегированные акции банков, страховых
компаний - 20%, депозитные сертификаты коммерческих банков
- 15%, облигации крупных промышленных предприятий - 30%.
Портфель В содержит акции нефтедобывающих и нефтеперерабатывающих
предприятий, акции предприятий, занимающихся
транспортировкой и реализацией нефти и нефтепродуктов, а
также производящих химическую продукцию на основе нефтепродуктов.
Определить типы этих портфелей и сравнить их с точки
зрения минимизации риска:
1) оба портфеля — консервативные, т.е. ориентированы в большей
степени на надежность, нежели на доходность вложений;
2) портфель В сильно диверсифицирован и поэтому надежен;
3) портфель В агрессивный, т.е. ориентирован в большей степени
на доходность, чем на надежность вложений;
4) риск портфеля А ниже, чем у портфеля 5.
15. Для определения величины VAR торговой компании А на
периоде, равном одному кварталу, ее аналитики использовали
95%-ный уровень значимости. В результате они получили оценку
этого показателя, равную 19% от вложенного капитала. Цена заемного
капитала для компании А - 32% годовых. Чему равно пороговое
значение кт[п коэффициента самофинансирования к,
исключающее риск разорения.
Коэффициент самофинансирования определяется долей
собственного капитала в полном капитале:
Собственный капитал _ СК
Собственный капитал + Заемный капитал СК + ЗК
1)25%;
2) 27,2%;
3) 19,8%;
4) 33,3%;
5) 16%.
16. Ваша эксцентричная тетя оставила вам в наследство
50 ООО долл. наличными и акции компании Boeing на 50 ООО долл.
К сожалению, она потребовала не продавать акции в течение одного
года, а все деньги вложить в один из рекомендуемых ею видов
акций. Какой вид следует выбрать, чтобы получить наиболее
надежный портфель при следующих данных (табл. 6.17)?
Таблица 6.17
Вид акций Boeing Kodak Georgia
Pacific
McDonnell
Douglas
Стандартное отклонение, % 28 25 29 24
Коэффициент корреляции
с доходностью акций
Boeing
1 0,45 0,34 0,64
1) Kodak;
2) Georgia Pacific;
3) McDonnell Douglas;
4) все деньги следует вложить в акции компании Boeing;
5) для решения задачи необходимо знать матрицу парных
корреляций.
17. В табл. 6.18 представлены данные об ожидаемых доход-
ностях трех акций на конкурентном рынке ценных бумаг в состоянии
его равновесия.
Таблица 6.18
Акция
Ожидаемая доходность акции,
при рыночной доходности
- 10%
Ожидаемая доходность акции,
при рыночной доходности
+ 10%
А 0 + 20
Б - 2 0 + 20
В + 15 + 19
Расположить эти акции в следующем порядке: акция имеет
среднюю степень риска; менее рискованна, чем в среднем на
рынке; более рискованна, чем в среднем на рынке.
1)Б;А; В;
2) В; А; Б;
3) исходных данных недостаточно;
4) А; В; Б.
Расчетные задачи
1. Портфель состоит из двух пакетов акций стоимостью 3000
тыс. руб. и 2000 тыс руб. Ожидаемая доходность по первому пакету
составляет 12%, а по второму - 16%. Какова ожидаемая доходность
портфеля в целом?
2. В начале года инвестор владел четырьмя видами ценных бумаг
в следующих количествах и со следующими текущими и ожидаемыми
к концу года ценами (табл. 6.5).
Таблица 6.5
Ценная бумага Количество
акций
Текущая цена,
долл.
Ожидаемая цена к
концу года, долл.
А 100 50 50
В 200 35 40
С 50 25 50
D 100 100 ПО
Какова ожидаемая доходность этого портфеля за год?
3. Инвестор желает приобрести 10-летние бескупонные облигации
сроком на 1 год с погашением по номиналу. Согласно
структуре процентных ставок, годовая доходность к погашению
ожидается на уровне 7%, а ее волатильность (СКО) - 15%. Опираясь
на нормальный закон распределения доходности, получить
следующие оценки:
а) найти интервал, внутри которого сосредоточены 98% возможных
уклонений итоговой за год доходности г от ее среднего
значения (98%-й доверительный интервал);
б) при том же уровне значимости (98%) определить диапазон
возможных годовых приростов А (выигрышей или потерь) начальных
вложений в размере 1 млн руб.;
в) как изменится доверительный с тем же уровнем значимости
интервал по доходности и приростам капитала для диапазона
дальновидности инвестора, равного 30 дням;
г) оцените величину максимально возможных потерь (VAR)
при условии, что инвестор пренебрегает вероятностями неблагоприятных
исходов ниже 0,01.
4. При вложении капитала в мероприятие А в 20 случаях из
200 была получена прибыль в 25 тыс. руб., в 80 случаях — 30 тыс.
руб., в 100 случаях — 40 тыс. руб. При вложении капитала в мероприятие
В в 144 случаях из 240 была получена прибыль 30 тыс.
руб., в 72 случаях — 35 тыс. руб., в 24 случаях — 45 тыс. руб. Выбрать
вариант вложения капитала:
а) по критерию средней прибыли;
б) по критерию колеблемости прибыли;
в) по критерию относительной колеблемости прибыли
5. Выбрать наименее рискованное направление инвестиций
из двух возможных вариантов:
а) собственные средства инвестора — 5 млн руб., максимально
возможная сумма убытков — 3,5 млн руб.;
б) собственные средства инвестора — 30 млн руб., максимально
возможная сумма убытков — 12 млн руб.
6. Инвестор выбирает между двумя акциями Aw В. Каждая из
них по-своему откликается на возможные рыночные ситуации,
достигая с известными вероятностями определенных значений
доходности (табл. 6.6).
Таблица 6.6
Акция Вероятность Доходность Вероятность Доходность
Л 0,5 20% 0,5 10%
В 0,99 15,1% 0,01 5,1%
Какую акцию выберет не склонный к риску инвестор?
7. Предположим, что на рынке могут возникнуть только два
исхода и на каждый из них акции А и В откликаются неслучайным
образом. Вероятности этих исходов и соответствующих им
значений доходности заданы табл. 6.7.
Таблица 6.7
Акция
Исход 1 Исход 2
Вероятность Доходность Вероятность Доходность
А 0,2 5% 0,8 1,25%
В 0,2 - 1% 0,8 2,75%
Определить:
а) ожидаемые доходности и риски (стандартные отклонения)
этих акций;
б) коэффициент корреляции между доходностями;
в) какую акцию выберет инвестор, максимизирующий вероятность
неразорения, учитывая, что инвестируются заемные
средства, взятые под ставку 1,5%;
г) как распределить вложения, чтобы получить безрисковую
комбинацию этих акций — портфель с не зависящей от исхода
эффективностью.
8. Инвестор вложил 60% своего капитала в акцию А, а оставшуюся
часть — в акцию 5. Риски этих акций составляют соответственно
10 и 20%. Чему равен риск портфеля, если:
а) доходности этих бумаг находятся в полной прямой корреляции;
б) доходности некоррелированы;
в) имеет место положительная статистическая связь с коэффициентом
корреляции 0,5.
9. Портфель состоит из активов А и В. Доля актива А — 40%,
актива В — 60%. Дисперсии активов
аА
2 = 0,0012184, ав
2 = 0,000987.
Коэффициент корреляции:
гАВ = 0,0008765.
Чему равен риск портфеля?
10. Используя Excel, найти оптимальный портфель Маркови-
ца требуемой доходности тр = 15% для трех некоррелированных
ценных бумаг, эффективности и риски которых заданы следующими
парами значений: 4, 10; 10, 40; 40, 80.
11. Для формирования портфеля ценных бумаг можно использовать
три вида акций, которые имеют следующие характеристики
(табл. 6.8).
Таблица 6.8
Ожидаемая доходность
т{ = 12% т 2 = 10% т 3 = 15%
Риск а, = 15% а2=8% а3 = 18%
Коэффициенты
корреляции
/-12=0,35 /-13=0,19 г2 3=0,1
С помощью компьютера составить 11 портфелей минимального
риска и требуемой доходности тп = 10 + 0,5(я — 1), п = 1, 2,
11. Затем нанести портфели, как точки, на плоскость «доходность
— риск» и построить график траектории эффективных
портфелей.
12. Инвестор может составить портфель из трех видов ценных
бумаг. Их эффективности являются случайными величинами,
имеющими следующие математические ожидания и стандартные
отклонения:
тх = 15%, а, = 5%; т2 = 25%, а 2 = 7%; т3 = 20%; а 3 = 6%.
Также известна корреляционная матрица этих эффективнос-
тей ((гу)) (табл. 6.9).
Таблица 6.9
Номер актива 1 2 3
1 1 0,8 0
2 0,8 1 -0,2
3 0 -0,2 1
Инвестор имеет возможность получать и предоставлять займы
по одной и той же безрисковой ставке г0=12%, а моделирую-
щая его поведение функция полезности дохода U(R) = 3R — О, IR .
Определить портфель Тобина, учитывающий, наряду с рисковыми
активами, возможности использования инвестором безрискового
процента.
13. Компания финансируется на 40% за счет заемного капитала
по безрисковой ставке в 10%. Акции компании имеют коэффициент
р, равный 0,5. Ожидаемая доходность рыночного портфеля
составляет 18%. Определить стоимость капитала компании.
14. Полная рыночная стоимость обыкновенных акций (собственный
капитал) компании оценивается в 6 млн долл.; общая
стоимость заемного капитала составляет 4 млн долл. Финансовые
аналитики получили оценку «бета» вклада акций компании на
уровне 1,5. Кроме того, известно, что ожидаемая премия за риск
рыночного портфеля равна 9%. Данная компания привлекает заемный
капитал под безрисковую ставку в 8%. Определить:
а) ожидаемую доходность акций этой компании;
б) р вклада ее активов;
в) стоимость капитала компании;
г) ставку дисконтирования для получения оценок эффективности
проектов, предназначенных для расширения действующего
производства;
д) ставку дисконтирования для оценки эффективности нового,
задуманного компанией инвестиционного проекта с коэффициентом
р = 1,2.
15. Сформировать портфель Тобина максимальной эффективности
и риска, не более заданного, из трех видов ценных бумаг:
безрисковых с эффективностью 2 и некоррелированных рисковых
ожидаемой эффективности 4 и 10 и рисками'2 и 4. Каковы соотношения
доли бумаг в рисковой части оптимального портфеля?
16. Имеются следующие данные об ожидаемых доходах и стандартных
отклонениях восьми рисковых портфелей (табл. 6.10).
Таблица 6.10
Портфель А Б В Г Д Е Ж 3
Ожидаемый доход, г, % 10 12,5 15 16 17 18 18 20
Стандартное отклонение, а, % 23 21 25 29 29 32 35 45
Используя графическое представление этих портфелей в осях
(/-, а ) , требуется ответить на следующие вопросы:
а) пять из этих портфелей эффективны, три - нет. Какие
портфели неэффективны?
б) допустим, что вы также можете брать кредиты и предоставлять
займы по ставке 12%. Какой из приведенных портфелей является
лучшим в этой ситуации?
в) предположим, вы готовы принять стандартное отклонение,
равное 25%. Какую максимальную ожидаемую доходность вы можете
получить при условии, что у вас нет возможности брать кредиты
или предоставлять займы?
г) как изменится ваша стратегия, если у вас появится возможность
кредитования и заимствования по ставке 12%. Вы по-прежнему
готовы принять 25%-ный риск, но стремитесь получить
максимальную ожидаемую доходность? Чему равен выигрыш по
сравнению с п. «в»?
17. Инвестор вложил 60% своих денег в акции Л, а остальные
— в акции В. Он оценивает перспективы для себя следующим образом
(табл. 6.11).
Таблица 6.11
Показатель
Акция
Л В
Ожидаемая доходность, % 15 20
Стандартное отклонение, % 20 22
Корреляция между доходнос-
тями
0,5
Определить:
а) каковы ожидаемая доходность и стандартное отклонение
портфеля?
б) как изменился бы ваш ответ, если бы коэффициент корреляции
равнялся 0 или —0,5?
в) портфель инвестора лучше или хуже портфеля, полностью
состоящего из акций А, или об этом невозможно судить?
18. Случайная доходность ценной бумаги имеет нормальное
распределение с ожидаемым значением E(R) = 14% и риском
15%. Облигации государственного займа дают безрисковую доходность
5%. Найти вероятность того, что вложение в эту бумагу
будет выгоднее, чем покупка облигаций.
19. Какова «бета» для каждой акции со следующими данными
об ожидаемой доходности (табл. 6.12)?
Таблица 6.12
Акция
Ожидаемая доходность акции
при рыночной доходности
- 10%
Ожидаемая доходность акции
при рыночной доходности
+ 10%
А 0 + 20
Б - 2 0 + 20
В - 3 0 0
Г + 15 + 15
Д + 10 - 10
Аналитические задачи
1. Пусть А — вклад в рискованный актив с вероятностью полной
утраты ра и с доходностью га при его сохранении. Требуется:
а) получить формулы математического ожидания и риска
(СКО) случайной доходности г подобного вложения;
б) определить, как изменятся формулы п. «а», если вместо
риска актива будет иметь место риск процентов: вклад возвращается
в полном объеме, а проценты теряются с вероятностью рп
или начисляются по ставке га.
2. Сформировать портфель Тобина минимального риска из
двух видов ценных бумаг: безрисковых с эффективностью 2 и
рисковых с ожидаемой эффективностью 10 и риском 5. Найти зависимость
эффективности портфеля от его риска.
3. В модели САРМ известны эффективности т{, т2 и р ь (32
двух ценных бумаг. Как найти безрисковую ставку г0 и эффективность
рынка тс1
4. Имеются два актива со случайными эффективностями Rl9
R2. Возможные значения этих эффективностей и их вероятности
сведены в табл. 6.13).
Таблица 6.13
Вероятность 0,2 0,8
Л, 5% 1,25%
* 2 - 1% 2,75%
Инвестор руководствуется функцией полезности дохода
U(R) = 1,2 R - 0 , 1 R2
и формирует составной актив исходя из критерия максимизации
ожидаемой полезности. Определить оптимальные пропорции
этого актива и его характеристики тр, ар.
5. Хорошо диверсифицированный портфель акций, сформированный
на капитале К, имеет коэффициент бета, равный
величине рп . Владелец портфеля намерен включить в него еще
один вид акций с коэффициентом р = РА и готов инвестировать
для этого сумму / = ХК, не превышающую 10% от первоначальной
инвестиции К. Получить формулу относительного изменения
в результате добавления акций А портфельного риска
(СКО) в зависимости от доли X и количественных характеристик
рп и рА.
6. Функция полезности инвестора в зависимости от изменения
дохода характеризуется следующим свойством: полезность
малого выигрыша Ах пропорциональна этому выигрышу и обратно
пропорциональна наличному капиталу х. Записать дифференциальное
уравнение, которому должна удовлетворять эта функция
и, решив его, найти ее вид.
7. Кредит Р выдан под ставку сложного процента j на срок п.
Чему равна величина дюрации D потока погашающих платежей
при ставке дисконтирования, равной кредитному проценту у, для
схемы:
а) равных процентных выплат;
б) равных срочных уплат?
8. Получить формулу расчета показателя дюрации простой
годовой ренты срока п с выплатами R в конце каждого года.
Ситуационные задачи
1. Пусть известны вектор ожидаемой доходности и матрица
ковариации трех активов (ценных бумаг):
10,1 210 60 0
MR = 7,8 VC = 60 90 0
5,0 0 о ! 0
Известно, что рискованный портфель гражданина Сидорова
разбит пополам на два рискованных актива. Определить:
а) какая из трех ценных бумаг является безрисковым активом?
Почему?
б) чему равна ожидаемая доходность и стандартное отклонение
всего портфеля, если безрисковый актив составляет 25% всего
портфеля?
2. Ваша эксцентричная тетя оставила вам в наследство акции
компании Boeing на 50 ООО долл. и 50 ООО долл. наличными. К сожалению,
она потребовала не продавать акции в течение одного
года, а все деньги вложить в один из видов акций компаний,
представленных в табл. 6.14. Какой портфель был бы наиболее
надежным при выполнении этих условий?
Таблица 6.14
Коэффициент корреляции компании
Стандартное
отклонение,
%
Компания
Boeing
&о
и
Kodak
Georgia
Pacific
McDonnell
Douglas
Polaroid
Thermo
Electron
Boeing 1 0,65 0,45 0,34 0,64 0,4 0,42 28
Citicorp 1 0,46 0,48 0,42 0,58 0,31 29
Kodak 1 0,50 0,50 0,41 0,23 25
Georgia 1 0,50 0,42 0,40 29
Pacific
McDon 1 0,21 0,37 24
nell
Douglas
Polaroid 1 0,33 39
Thermo 1 42
Electron
3. Андрею Кутукову нравится игра «Времена года», которую
ежеквартально проводит казино «Шанс». Согласно его прикидкам,
успех в игре имеет вероятность 0,08 и позволяет удесятерить
вложенный капитал; при проигрыше деньги «теряются» (достаются
казино). Объявление результатов игры и выплаты победите-
лям производятся в конце каждого квартала перед началом очередного
тура. Чтобы любимое развлечение не стало разорительным,
он решил параллельно с игрой часть х д денег класть на трехмесячный
депозит под безрисковую ставку гд = 10% (в расчете на
квартал).
Определить пропорцию вложений в игру и на депозит с учетом
требования сохранить «в среднем» вложенный капитал.
4. Иванову надоело держать деньги в квартирных тайниках, и
он решил вложиться в акции А, В с характеристиками тА = 12%,
а А = 15%, тв = 28%, а в = 30% и коэффициентом корреляции
ГАВ ~ 0,1. Сторонник осторожных решений и умеренных
действий, он готов довольствоваться ожидаемой доходностью
тр = 14%, лишь бы надежность ее получения была как можно выше.
Требуется:
а) записать (алгебраически) модель оптимальной по критерию
риска диверсификации вложения при условии, что ради
снижения риска Иванов предполагает часть денег хранить наличностью
в том же, что и раньше, укромном месте;
б) используя Excel, найти оптимальные пропорции вложения
и его риск;
в) определить, куда и сколько следует вложить, если накопленная
Ивановым сумма равна 100 000 руб.
5. Менеджер отвечает за управление портфелем пенсионного
фонда, в его распоряжении 990 млн руб., которые он должен поделить
между рыночным портфелем и безрисковыми ценными
бумагами. Аналитик, консультирующий менеджера, уверен, что в
следующем году по безрисковым ценным бумагам можно получить
доходность 0,08, а возможные ставки годовой доходности
рыночного портфеля и их вероятности будут такими, как показано
ниже:
Какой должна быть доля каждой из компонент, чтобы ожидаемая
доходность инвестиций пенсионного фонда составляла
Доходность Вероятность
0,30
0,20
0,10
-0,10
0,30
0,40
0,25
0,05
15%? Чему будет равен риск такого портфеля (среднеквадрати-
ческое отклонение его доходности)?
6. Врач, вышедший на пенсию, предполагает покупать только
долговые ценные бумаги и акции рыночного портфеля. Как инвестор
он хочет быть уверенным в том, что даже если доходность
рыночного портфеля окажется ниже нормального уровня тс =
= 14% на величину, соответствующую двум среднеквадратичес-
ким отклонениям а с = 12%, доходность его портфеля будет не менее
5%. При этом вероятностями худших исходов он пренебрегает.
Определить:
а) какой портфель вы бы ему порекомендовали, если ставка
безрискового процента по долговым бумагам составляет 8%;
б) вероятности неблагоприятных исходов, которыми пренебрегает
инвестор (аппроксимируется распределение случайной
доходности рынка нормальным законом).
7. «Зачем покупать товар, когда можно купить его производство
», — решил владелец процветающей торговой компании господин
Широков. Через год и в обозримой перспективе эта сделка
даст ему 0,3 млн руб. ежегодно, но каков риск? Если оценить
этот проект как безрисковый, а его риск окажется таким же, что
и у рынка ценных бумаг, то много ли переплатит господин Широков,
покупая эту фирму?
Решить задачу при условии, что безрисковая ставка г0 = 10%,
а ожидаемая доходность рынка тс = 20%.
8. Получив наследство, Николай почти все деньги вложил в
ценные бумаги. Его портфель составлен из инвестиции в рискованный
портфель (дающий 12%-ную ожидаемую доходность и
25%-ные стандартное отклонение) и в безрисковый актив (дающий
7%-ную доходность). В целом портфель имеет стандартное
отклонение 20%. Может ли Николай оценить ожидаемую доходность
портфеля, и если да, то чему эта доходность равна?
Тесты
1. Из двух акций А и В первая отрицательно коррелируется с
другими акциями, доступными для инвестирования на рынке
ценных бумаг. Расположить в порядке возрастания равновесные
доходности этих акций тАу тви ставку безрискового процента г0
1)г0,тА,тв;
2) г0 , тв, тА;
3) mA9 r0 , тв\
4) все ответы неверны.
2. Фирма оценивает свои инвестиционные проекты по ставке
сравнения, равной стоимости капитала (WACC). Что можно сказать
о высокорисковых проектах? Будут они переоценены или
недооценены при таком подходе:
1) переоценены;
2) недооценены;
3)исходной информации недостаточно.
3. Рассмотреть четыре акции со следующими ожидаемыми
доходностями и стандартными отклонениями (табл. 6.15).
Таблица 6.15
Акция Ожидаемая доходность,
%
Стандартное
отклонение, %
А 15 12
В 14 7
С 13 8
D 16 11
Есть ли среди этих акций те, от которых инвестор, избегающий
риска, заведомо откажется:
1) таких акций нет;
2) А;
3) В;
4) С;
5)D.
4. Согласно правилу оценки долгосрочных активов (уравнение
равновесного рынка), акциям с коэффициентом р свойственны
те же рыночный риск и ожидаемая доходность, что и:
1) портфелю, состоящему из р инвестиций в казначейские
векселя и (1 - Р) инвестиций в рыночные ценные бумаги;
2) портфелю, состоящему из Р инвестиций в рыночные ценные
бумаги и (1 — Р) инвестиций в казначейские векселя;
3) портфелю, состоящему наполовину из рыночных ценных
бумаг и наполовину из казначейских векселей;
4) такого портфеля, кроме пакета этих акций, нет.
5. В какой из ситуаций можно достичь максимального сокращения
риска вложений, если их возможности ограничиваются
двумя акциями и операции коротких продаж не производятся?
1) доходности акций некоррелированы;
2) имеет место полная отрицательная корреляция;
3) корреляция положительна;
4) корреляция отрицательна;
5) имеет место полная положительная корреляция.
6. Ожидаемую доходность акции т часто задают в виде линейной
функции с коэффициентом бета (Р) от ожидаемой доходности
рынка (гт):
т = а + $гт.
Согласно модели ценообразования на рынке капиталовложений
(САРМ) равновесному состоянию этого рынка будет отвечать:
1 ) а = 0;
2) а = г0 (ставка безрискового процента);
3 ) a = ( l - p ) r 0;
4 ) a = ( l - r 0 ) ;
5) ни один из приведенных выше вариантов не верен.
7. Портфель содержит акции 10 видов с равными по каждому
виду вложениями капитала. Половина этих акций имеет коэффициент
р = 1,2, а у остальных — р = 1,4. Чему равен этот показатель
(«бета» вклада) для всего портфеля?
1)1,3;
2) больше, чем 1,3, потому что портфель не полностью диверсифицирован;
3) меньше, чем 1,3, потому что диверсификация уменьшает
величину, «бета» вклада;
4) имеющейся информации недостаточно.
8. Представлены три ценовых состояния рынка (конъюнктуры)
с двумя видами акций А и Б (табл. 6.16).
Таблица 6.16
Акция
Конъюнктура
1 2 3
А 8 11 9
Б 12 9 13
Наилучшей из всех является конъюнктура:
1) первая;
2) вторая;
3) третья;
4) имеющейся информации недостаточно.
9. Портфель инвестора содержит меньше различных акций,
чем рыночный портфель. Риск этого пюртфеля будет ниже, чем
риск рыночного портфеля, если:
1) портфель хорошо диверсифицирован;
2) «бета» портфеля меньше единицы;
3) портфель хорошо диверсифицирован и его р > 1;
4) портфель хорошо диверсифицирован и его Р < 1;
5) ни один из приведенных выше вариантов ответов неверен.
10. Инвестиционный портфель предприятия представляет совокупность:
1) финансируемых предприятием инвестиционных проектов;
2) принятых к эксплуатации объектов завершенного строительства;
3) ценных бумаг в фондовом портфеле предприятия;
4) эмитированных предприятием акций;
5) эмитированных предприятием облигаций.
11. Компания решает, выпускать ли ей акции, чтобы привлечь
деньги для финансирования инвестиционного проекта, риск которого
равен рыночному, а ожидаемая доходность — 20%. Если
безрисковая ставка равна 10% и ожидаемая доходность рыночных
ценных бумаг (рыночного портфеля) - 15%, компании следует
выпустить акции:
1) при «бета» акций компании не больше 2,0;
2) при «бета» акций компании не меньше 2,0;
3) при любом значении «бета».
12. Вы инвестировали 1 млн руб. в хорошо диверсифицированный
портфель акций. В настоящее время вы получили еще
200 000 руб. (0,2 млн руб.) в наследство. Какое из следующих
действий обеспечит вам наиболее надежный доход от вашего
портфеля:
1) инвестирование 200 тыс. руб. в государственные облигации
(их р = 0);
2) инвестирование 200 тыс. руб. в акции с р = 1;
3) инвестирование 200 тыс. руб. в акции с р = -0,25?
13. Пусть ставка дисконтирования г составляет 100%. В какой
последовательности, начиная с конца первого периода, следует
расположить два платежа (4; 16), чтобы средний срок выплаты
был наименьшим? Изменится ли ответ при нулевой денежной
оценке времени, т.е. для значения г = 0? При какой расстановке
платежей риск процентной ставки будет выше?
0(16; 4);
2) (4; 16);
3) изменится;
4) не изменится;
5) (16; 4);
6) (4; 16)?
14. Портфель А имеет следующую структуру: облигации государственного
займа — 12%, простые акции крупных нефтяных
компаний — 15%, привилегированные акции банков, страховых
компаний - 20%, депозитные сертификаты коммерческих банков
- 15%, облигации крупных промышленных предприятий - 30%.
Портфель В содержит акции нефтедобывающих и нефтеперерабатывающих
предприятий, акции предприятий, занимающихся
транспортировкой и реализацией нефти и нефтепродуктов, а
также производящих химическую продукцию на основе нефтепродуктов.
Определить типы этих портфелей и сравнить их с точки
зрения минимизации риска:
1) оба портфеля — консервативные, т.е. ориентированы в большей
степени на надежность, нежели на доходность вложений;
2) портфель В сильно диверсифицирован и поэтому надежен;
3) портфель В агрессивный, т.е. ориентирован в большей степени
на доходность, чем на надежность вложений;
4) риск портфеля А ниже, чем у портфеля 5.
15. Для определения величины VAR торговой компании А на
периоде, равном одному кварталу, ее аналитики использовали
95%-ный уровень значимости. В результате они получили оценку
этого показателя, равную 19% от вложенного капитала. Цена заемного
капитала для компании А - 32% годовых. Чему равно пороговое
значение кт[п коэффициента самофинансирования к,
исключающее риск разорения.
Коэффициент самофинансирования определяется долей
собственного капитала в полном капитале:
Собственный капитал _ СК
Собственный капитал + Заемный капитал СК + ЗК
1)25%;
2) 27,2%;
3) 19,8%;
4) 33,3%;
5) 16%.
16. Ваша эксцентричная тетя оставила вам в наследство
50 ООО долл. наличными и акции компании Boeing на 50 ООО долл.
К сожалению, она потребовала не продавать акции в течение одного
года, а все деньги вложить в один из рекомендуемых ею видов
акций. Какой вид следует выбрать, чтобы получить наиболее
надежный портфель при следующих данных (табл. 6.17)?
Таблица 6.17
Вид акций Boeing Kodak Georgia
Pacific
McDonnell
Douglas
Стандартное отклонение, % 28 25 29 24
Коэффициент корреляции
с доходностью акций
Boeing
1 0,45 0,34 0,64
1) Kodak;
2) Georgia Pacific;
3) McDonnell Douglas;
4) все деньги следует вложить в акции компании Boeing;
5) для решения задачи необходимо знать матрицу парных
корреляций.
17. В табл. 6.18 представлены данные об ожидаемых доход-
ностях трех акций на конкурентном рынке ценных бумаг в состоянии
его равновесия.
Таблица 6.18
Акция
Ожидаемая доходность акции,
при рыночной доходности
- 10%
Ожидаемая доходность акции,
при рыночной доходности
+ 10%
А 0 + 20
Б - 2 0 + 20
В + 15 + 19
Расположить эти акции в следующем порядке: акция имеет
среднюю степень риска; менее рискованна, чем в среднем на
рынке; более рискованна, чем в среднем на рынке.
1)Б;А; В;
2) В; А; Б;
3) исходных данных недостаточно;
4) А; В; Б.