4.4. Організація вибіркових досліджень
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
119 120 121 122 123 124 125 126 127 128
Будь-який об’єкт знаходиться на певному рівні ієрархії економіки і може водночас бути неподільним елементом для вищих рівнів і системою для об’єктів нижчих рівнів ієрархії, що його становлять.
За системного підходу будь-який економічний об’єкт (наприклад ринок) чи множина взаємодіючих об’єктів, об’єднаних у єдине ціле, розглядається як система. Якою б не була система, її специфіка не вичерпується особливостями її складових, а ґрунтується на характері зв’язків і відношень між ними, що і визначає цілісність системи, її структуру та якісно нові властивості — системні властивості, що мають імовірнісно-статистичну природу і відображають статистичні закономірності функціонування і розвитку системи. Такі закономірності можна апроксимувати економіко-статистичними моделями. Ці моделі можуть класифікуватися за характером виявлених взаємозв’язків, за засобом відтворення їх, за характером використовуваної інформації, за засобом відображення структури впливів. Адекватність моделі реальному процесу залежить від методологічних принципів моделювання. Наприклад, за характером взаємозв’язків розрізняють моделі стохастичні та функціональні. Перші відображають стохастичний характер закономірностей функціонування системи, другі — зв’язок складових елементів розрахункових формул економічних показників.
Найпростіший і найзручніший для аналізу варіант системи — сукупність великого обсягу однорідних елементів. Однорідність — це не точний збіг властивостей елементів, а наявність спорідненості в головному.
Можна виділити три форми зовнішнього прояву неоднорідності:
у межах системи виділяються чітко розмежовані класи (типи) елементів;
окремі елементи системи не можна однозначно віднести до якогось класу через відсутність чітких меж між типами (розмиті класи);
виділяються окремі аномальні об’єкти, які мають своєрідні, нетипові для системи в цілому умови функціонування.
Для кожної з цих форм існує свій найбільш раціональний спосіб побудови моделей.
Склад
незалежних змінних моделі називають ознаковою множиною, вони характеризують
якісну особливість статис-
тичних систем, специфіку зв’язку. Змінні включаються до моделі в результаті
емпіричної перевірки їх впливу за допомо-
гою статистичних критеріїв. Крім того, виконується диференційна оцінка їх
значущості. Визначити найбільшу інформативність якої-небудь ознаки можна з
допомогою експертних оцінок груп фахівців. Методики проведення опитування
фахівців відомі.
Ідея застосування різноманітних статистичних методів і моделей до одних і тих самих наборів статистичних даних полягає в тому, що вибирається модель, застосовується до наявних даних, визначається ступінь відповідності моделі реальним даним, здійснюється тлумачення результатів.
Організація вибіркових досліджень. При розробленні концепції збирання інформації необхідно визначити:
генеральну сукупність об’єктів дослідження;
метод вибірки;
обсяг вибірки.
Генеральна сукупність — це всі об’єкти або спостереження, корисні для дослідження в межах вирішення конкретної проблеми. Вона має обмежуватись у часі і просторі, а всі об’єкти повинні відбиратись до неї за певними умовами, причому це мають бути самі об’єкти, а не їх характеристики.
Коли генеральна сукупність досить мала або коли того потребує проблема, то досліджуються всі об’єкти генеральної сукупності. Але таке дослідження не завжди можливе (генеральна сукупність може мати і нескінченну кількість елементів) і взагалі потребує багато витрат. Тому часто виконують вибірковий аналіз об’єктів генеральної сукупності.
Вибіркова сукупність (вибірка) — частина генеральної сукупності, яка є репрезентативною ілюстрацією (зменшеною моделлю) генеральної сукупності. Лише в цьому випадку результати аналізу вибірки можна поширити на всю генеральну сукупність. Існують різні методи формування вибірки (табл. 4.3).
Таблиця 4.3
Методи формування вибірки
Випадкова вибірка |
Невипадкова вибірка |
Проста |
Довільна |
Групова |
Типова |
Метод «клумб» |
Метод концентрації |
Багатоступенева |
Метод квот |
Випадкові вибірки:
проста вибірка — вибірка за допомогою випадкових чисел;
групова вибірка — розклад генеральної сукупності на окремі групи з подальшим проведенням простої вибірки в кожній з них;
метод «клумб» — розклад генеральної сукупності на окремі групи з подальшим проведенням простої вибірки декількох з них;
багатоступенева вибірка — проста вибірка проводиться декілька разів, результат кожної стадії використовується як сукупність одиниць для подальшого вибору.
Невипадкові вибірки:
довільна вибірка — елементи вибираються без плану і закономірностей;
типова вибірка — вибірка характерних (за деякими ознаками) елементів, типових для даної генеральної сукупності;
метод концентрації — вибір найбільш суттєвих і важливих елементів генеральної сукупності;
метод квот — розподіл елементів генеральної сукупності за певною ознакою по групах з визначенням їх частки у генеральній сукупності; вибір елементів з кожної групи так, щоб вибірка містила їх у тих самих пропорціях.
Необхідною умовою організації дослідження є попереднє вивчення генеральної сукупності та оцінювання її однорідності. Оскільки повне дослідження занадто дороге, а часом і неможливе, обмежуються вибіркою, так щоб вона була репрезентативним відображенням генеральної сукупності. Найчастіше використовують суто механічний добір елементів, за якого чисельність n вибірки визначається за формулою
де t — коефіцієнт довіри, який залежить від імовірності того, що гранична помилка не перевищить t-кратну середню помилку; σ — дисперсія помилки; Δ — гранична задана помилка вибірки; N — число одиниць у досліджуваній генеральній сукупності.
За ймовірності 0,990 коефіцієнт довіри дорівнює 3,0, а за ймовірності 0,999 він дорівнює 3,28. Найчастіше у розрахунках спираються на ймовірність 0,954, коли коефіцієнт довіри t = 2. Дисперсію при цьому визначають на основі експерименту, спробного дослідження або ж за аналогами.
Процес отримання та обробки емпіричних даних здійснюється відповідно до обраного робочого інструментарію. Особливе значення в цьому процесі мають спеціальні вибіркові обстеження (опитування населення, фахівців, експертиза). Вони дають змогу глибше розкрити конкретну проблематику маркетингових досліджень.
Найчастіше організація вибіркового обстеження складається з таких елементів:
вибирається цільова величина, що підлягає вимірюванню (наприклад, частка підприємств, що використовують комп’ютери);
вибирається основа вибіркового спостереження — генеральна сукупність (наприклад, опубліковані списки, статистична звітність тощо); визначається структура вибірки (умови вибірки із генеральної сукупності); визначається метод вибірки (випадковий, пропорційний, фронтальний);
вибираються способи отримання інформації для визначення цільової величини (спостереження поведінки, дані з документів, відповіді на анкетні питання);
вибирається метод аналізу результатів вибіркового спостереження (наприклад, обчислення середньої зваженої або складання формули регресії, оцінка точності досліджень).
Подання даних. Дуже важливо, як буде подано дані для аналізу. Загальний підхід — подання даних має бути якомога простішим. Основні принципи подання даних такі:
Кількість спостережень. Загальний обсяг вибірки даних є у первісному звіті дослідника. Не слід формувати групи респондентів на основі підвибірок, що входять до загальної вибірки.
Основи класифікації. Результати опитування мають бути згруповані таким чином, щоб вони були доступні в поданні та розумінні. Особливо це стосується «вільних» питань або відповідей (на кшталт перше, друге або ваш варіант). Дослідник повинен розробити кодовані категорії, за якими групуватимуться ці «вільні» відповіді.
Недоцільна
точність. Не слід надавати даним більшого значення, ніж вони мають насправді.
Не потрібно подавати дані з
більшою точністю, ніж необхідно для аналізу. Корисність їх при цьому не
збільшиться, а сприйняття менеджером погіршиться;
Абсолютні та відносні дані. Дані можна подавати у вигляді їх абсолютних значень і відсоткових відношень. І ті, й інші можуть використовуватися в аналізі з різним успіхом залежно від виду досліджуваної проблеми. Найбільша цінність подання даних у вигляді відсоткових відношень полягає в тому, що можна безпосередньо порівнювати одну групу з іншою‚ однак не завжди зрозуміло, за яким правилом їх порівнювати. Це залежить від двох моментів: процедуру порівняння необхідно провести виходячи з власного уявлення про те, що відбувається в системі, яким чином вона залежить від досліджуваної проблеми.
Вибіркові розподіли. Вибірковий розподіл в узагальненому вигляді відображає варіацію характеристик усіх можливих випадкових вибірок даного обсягу з деякої сукупності спостережень. На практиці рідко здійснюється більше за одну випадкову вибірку, отже, вибірковий розподіл потрібно розглядати швидше як теоретичне поняття. Воно використовується при оцінюванні міри достовірності характеристик, отриманих унаслідок здійснення одиничної випадкової вибірки.
Теорія статистичних вибірок вивчає зміну окремих узагальнених вибіркових характеристик, таких як середня, дисперсія за різних способів формування вибірок.
Для кожного з різних узагальнюючих показників, таких як середня, дисперсія, коефіцієнт кореляції і т. д., можна побудувати свій вибірковий розподіл. Розглянемо вибіркові розподіли середньої, оскільки подібні розподіли є найбільш важливими і водночас найбільш простими.
Вибірковий розподіл середніх, отриманий за реалізації простих випадкових вибірок обсягу n, кожна з яких витягнута з однієї і тієї самої сукупності даних, має три простих властивості. Середня цього розподілу дорівнює середній для початкової сукупності; його форма наближується до форми нормального розподілу (це не стосується вибірок дуже малого обсягу); нарешті, його стандартне відхилення є стандартним відхиленням індивідуальних спостережень у початковій сукупності.
Значення дисперсії може бути розраховане на базі стандартного відхилення наявної вибірки. У цьому випадку, взагалі кажучи, має бути використаний t-розподіл Стьюдента, однак, якщо виключити вибірки дуже невеликого обсягу, то розподіл Стьюдента буде трохи відрізнятися від нормального розподілу зі стандартним відхиленням.
Величина стандартного відхилення характеризує розсіяння середніх значень різних вибірок обсягу n і звичайно називається стандартною помилкою середньої. Це одна з основних формул у теорії статистичних вибірок.
Різниця між середніми двох незалежних вибірок з обсягами nx та ny, витягнутих з однієї і тієї самої сукупності, має стандартну помилку:
,
де Sx та Sy — стандартне відхилення спостережень х та у.
Вибіркові розподіли інших узагальнених характеристик звичайно мають складніший вигляд, однак для вибірок великого обсягу їх форма наближається до форми нормального розподілу. Цей факт полегшує розв’язання проблем, з якими стикається дослідник у теорії статистичних вибірок.
Повторення експериментів. Щоб надати ізольованому результату наукове значення, необхідне повторення проведеного дослідження.
Якщо первинний результат не буде підтверджений, треба зробити висновок, що його не можна узагальнити принаймні за допомогою якого-небудь простого способу. Однак, якщо той самий результат буде отриманий і вдруге, то можна припустити, що він може виявитися ще більш загальним.
Просте встановлення можливості повторного відтворення деякого результату — це тільки перший крок. Але навіть невелика кількість успішних повторень раніше отриманого результату може сприяти істотному прогресу виконуваного дослідження, якщо умови, в яких кожний раз проводилося. спостереження, досить сильно різняться.
Ніяке дослідження не може бути знову відтворене в абсолютно тих самих умовах, що і раніше. Однак важливим є повторне відтворення отриманого раніше результату, а не реконструкція всіх характерних для попереднього дослідження умов спостереження. Дійсно, для з’ясування діапазону різних умов або факторів, за яких залишаються в силі отримані раніше результати, потрібне повторення проведеного дослідження за самих різних ситуацій. Отже, насамперед треба відповісти на питання: які фактори повинні й можуть мінятися?
Фактори, які можуть змінюватися. Отримавши абсолютно новий результат, звичайно намагаються повторити проведене дослідження, відтворюючи його якомога точніше: ті самі умови спостереження, той самий апарат, те саме джерело матеріалу; при цьому переслідується мета легко і швидко перевірити, чи можна відтворити той самий результат знову.
Щоб отримати ширше узагальнення, змінюють умови спостережень. Така зміна здійснюється доти, поки вона істотно не позначиться на результатах. Проте можна піти і далі цього уявного кордону. Це допоможе з’ясувати, чи дійсно тільки в даному діапазоні умов отриманий результат має узагальнюючий характер або ж цей діапазон може бути розширений ще більше.
Подальші дослідження мають бути сконцентровані на виявленні цього фактора (зміна інших факторів при цьому не повинна впливати на отримуваний результат). Конкретний фактор стає важливим у тому разі, коли його зміна дійсно впливає на результати.
Результат має отримати підтвердження й тоді, коли змінюється тільки один фактор. Ніяке одиничне дослідження не може дати остаточної вичерпної відповіді.
Статистичні обстеження. Вибіркові обстеження, або цензи, в своїй найпростішій формі є методами збирання даних, за яких дослідник не може впливати на характер варіації факторів. Подібні обстеження ведуть до отримання середніх статистичних показників, надійність яких повністю залежить від показності зібраних даних. Просте статистичне обстеження є методом, до якого вдаються в крайньому випадку, коли неможливо вдатися до якого-небудь іншого, конструктивнішого способу збирання інформації. Одна з проблем, що виникає при цьому, полягає в тому, що техніка простого репрезентативного вибіркового обстеження не забезпечує виконання головної вимоги — можливості повторення дослідження за різних умов. Наприклад, витягання двох вибірок із загальної статистичної сукупності не буде суворо незалежним повторенням, оскільки результати повинні збігтися з точністю до помилок випадкового вибору. Витягання двох вибірок за різних умов (наприклад, вибір з однієї і тієї самої сукупності людей, але в різні дні тижня) не є простим вибором, оскільки навмисна зміна емпіричних умов спостереження (вибір двох конкретних днів тижня) вносить у процес збирання інформації елемент регульованості, що має нестатистичну природу.
Цей набір показників більш змістовний, ніж проста середня. Уводячи елемент регулювання в процес збирання інформації, дослідник тим самим практично здійснює проведення декількох різних обстежень. Статистична репрезентативність необхідна тільки у випадках з нерегульованою варіацією в рамках кожного з цих обстежень. У більшості таких структурованих обстежень і цензів чисто статистичний елемент пов’язаний із забезпеченням гарантій того, що отримані результати міститимуть лише незначні систематичні помилки або ж не міститимуть їх зовсім.
Конкретні статистичні дослідження. Характер більшості конкретних статистичних досліджень значною мірою визначається безпосередньо самим дослідником. Він вибирає змінні, які мають вимірюватися, і різні умови, за яких він проводитиме це вимірювання. Він навіть може, не бажаючи того, дещо впливати на матеріал, з яким має намір працювати, причому впливати на результати дослідження. Однак звичайно дослідник при проведенні конкретного статистичного дослідження намагається, щоб подібний вплив не був істотним.
Багато які конкретні дослідження організовані так, що різні фактори змінюються одночасно, а не поодинці. Не просто встановити точну форму причинно-наслідкових зв’язків, що істотно сповільнює і утруднює успішне проведення досліджень.
Сила статистичного підходу полягає в тому, що за його допомогою значно простіше отримувати негативні результати. Іншими словами, він допомагає встановити, що деякий фактор не справляє впливу на явище, що вивчається. Одиничний результат має бути підтверджений або ж уточнений на базі інформації, отриманої за новими даними.
Контрольні експерименти. Експериментування часто сприяє прискоренню отримання результату в конкретних статистичних дослідженнях. У цьому випадку дослідник самостійно змінює або коригує вплив деяких факторів на явище, що вивчається. Експериментування має дві основні функції: здійснення штучного регулювання, що забезпечує ідентичність певних умов проведення різних досліджень, і штучної зміни умов, що дає змогу з’ясувати, що може статися за такої зміни. Однак експериментатор не може контролювати всі фактори в досліджуваній ситуації.
Планування експериментів. Іноді складніша схема проведення експериментів дає змогу здійснити замість одного експерименту серію окремих експериментів, забезпечуючи більш або менш схожі умови їх перебігу. У такому разі вдається значною мірою уникнути невизначеності, пов’язаної з інтерпретацією ізольованих результатів. Якщо вдається скористатися й рандомізацією, то ефект буде ще відчутнішим.
Організувати експеримент можна таким чином, що одночасно проводитиметься велика кількість різних експериментів, послідовно відмінних один від одного зміною тільки одного фактора. (У розробку такого методу великий внесок було зроблено Р. Фішером.) В організованих подібним чином експериментах необов’язково використовувати додаткову інформацію, наприклад, додаткові спостереження. Подібний «факторіальний» тип організації експерименту часто приводить до зменшення величини його статистичної помилки.
Попереднє планування експерименту, особливо з використанням рандомізації, зменшує невизначеність при інтерпретації отриманих результатів. У організованому відповідним чином експерименті може змінюватися більш як один фактор. Тому з допомогою одного дослідження можна отримати результати, що мають досить загальну природу.
Однак повторення експериментів за різних умов перетворюється на одну з форм конкретного статистичного дослідження, якщо зміна умов не може регулюватися в процесі здійснення експерименту. Таким чином, підхід, заснований на конкретних статистичних дослідженнях, а не на спеціально спланованих експериментах, залишається основною формою збирання наукової інформації.
Будь-який об’єкт знаходиться на певному рівні ієрархії економіки і може водночас бути неподільним елементом для вищих рівнів і системою для об’єктів нижчих рівнів ієрархії, що його становлять.
За системного підходу будь-який економічний об’єкт (наприклад ринок) чи множина взаємодіючих об’єктів, об’єднаних у єдине ціле, розглядається як система. Якою б не була система, її специфіка не вичерпується особливостями її складових, а ґрунтується на характері зв’язків і відношень між ними, що і визначає цілісність системи, її структуру та якісно нові властивості — системні властивості, що мають імовірнісно-статистичну природу і відображають статистичні закономірності функціонування і розвитку системи. Такі закономірності можна апроксимувати економіко-статистичними моделями. Ці моделі можуть класифікуватися за характером виявлених взаємозв’язків, за засобом відтворення їх, за характером використовуваної інформації, за засобом відображення структури впливів. Адекватність моделі реальному процесу залежить від методологічних принципів моделювання. Наприклад, за характером взаємозв’язків розрізняють моделі стохастичні та функціональні. Перші відображають стохастичний характер закономірностей функціонування системи, другі — зв’язок складових елементів розрахункових формул економічних показників.
Найпростіший і найзручніший для аналізу варіант системи — сукупність великого обсягу однорідних елементів. Однорідність — це не точний збіг властивостей елементів, а наявність спорідненості в головному.
Можна виділити три форми зовнішнього прояву неоднорідності:
у межах системи виділяються чітко розмежовані класи (типи) елементів;
окремі елементи системи не можна однозначно віднести до якогось класу через відсутність чітких меж між типами (розмиті класи);
виділяються окремі аномальні об’єкти, які мають своєрідні, нетипові для системи в цілому умови функціонування.
Для кожної з цих форм існує свій найбільш раціональний спосіб побудови моделей.
Склад
незалежних змінних моделі називають ознаковою множиною, вони характеризують
якісну особливість статис-
тичних систем, специфіку зв’язку. Змінні включаються до моделі в результаті
емпіричної перевірки їх впливу за допомо-
гою статистичних критеріїв. Крім того, виконується диференційна оцінка їх
значущості. Визначити найбільшу інформативність якої-небудь ознаки можна з
допомогою експертних оцінок груп фахівців. Методики проведення опитування
фахівців відомі.
Ідея застосування різноманітних статистичних методів і моделей до одних і тих самих наборів статистичних даних полягає в тому, що вибирається модель, застосовується до наявних даних, визначається ступінь відповідності моделі реальним даним, здійснюється тлумачення результатів.
Організація вибіркових досліджень. При розробленні концепції збирання інформації необхідно визначити:
генеральну сукупність об’єктів дослідження;
метод вибірки;
обсяг вибірки.
Генеральна сукупність — це всі об’єкти або спостереження, корисні для дослідження в межах вирішення конкретної проблеми. Вона має обмежуватись у часі і просторі, а всі об’єкти повинні відбиратись до неї за певними умовами, причому це мають бути самі об’єкти, а не їх характеристики.
Коли генеральна сукупність досить мала або коли того потребує проблема, то досліджуються всі об’єкти генеральної сукупності. Але таке дослідження не завжди можливе (генеральна сукупність може мати і нескінченну кількість елементів) і взагалі потребує багато витрат. Тому часто виконують вибірковий аналіз об’єктів генеральної сукупності.
Вибіркова сукупність (вибірка) — частина генеральної сукупності, яка є репрезентативною ілюстрацією (зменшеною моделлю) генеральної сукупності. Лише в цьому випадку результати аналізу вибірки можна поширити на всю генеральну сукупність. Існують різні методи формування вибірки (табл. 4.3).
Таблиця 4.3
Методи формування вибірки
Випадкова вибірка |
Невипадкова вибірка |
Проста |
Довільна |
Групова |
Типова |
Метод «клумб» |
Метод концентрації |
Багатоступенева |
Метод квот |
Випадкові вибірки:
проста вибірка — вибірка за допомогою випадкових чисел;
групова вибірка — розклад генеральної сукупності на окремі групи з подальшим проведенням простої вибірки в кожній з них;
метод «клумб» — розклад генеральної сукупності на окремі групи з подальшим проведенням простої вибірки декількох з них;
багатоступенева вибірка — проста вибірка проводиться декілька разів, результат кожної стадії використовується як сукупність одиниць для подальшого вибору.
Невипадкові вибірки:
довільна вибірка — елементи вибираються без плану і закономірностей;
типова вибірка — вибірка характерних (за деякими ознаками) елементів, типових для даної генеральної сукупності;
метод концентрації — вибір найбільш суттєвих і важливих елементів генеральної сукупності;
метод квот — розподіл елементів генеральної сукупності за певною ознакою по групах з визначенням їх частки у генеральній сукупності; вибір елементів з кожної групи так, щоб вибірка містила їх у тих самих пропорціях.
Необхідною умовою організації дослідження є попереднє вивчення генеральної сукупності та оцінювання її однорідності. Оскільки повне дослідження занадто дороге, а часом і неможливе, обмежуються вибіркою, так щоб вона була репрезентативним відображенням генеральної сукупності. Найчастіше використовують суто механічний добір елементів, за якого чисельність n вибірки визначається за формулою
де t — коефіцієнт довіри, який залежить від імовірності того, що гранична помилка не перевищить t-кратну середню помилку; σ — дисперсія помилки; Δ — гранична задана помилка вибірки; N — число одиниць у досліджуваній генеральній сукупності.
За ймовірності 0,990 коефіцієнт довіри дорівнює 3,0, а за ймовірності 0,999 він дорівнює 3,28. Найчастіше у розрахунках спираються на ймовірність 0,954, коли коефіцієнт довіри t = 2. Дисперсію при цьому визначають на основі експерименту, спробного дослідження або ж за аналогами.
Процес отримання та обробки емпіричних даних здійснюється відповідно до обраного робочого інструментарію. Особливе значення в цьому процесі мають спеціальні вибіркові обстеження (опитування населення, фахівців, експертиза). Вони дають змогу глибше розкрити конкретну проблематику маркетингових досліджень.
Найчастіше організація вибіркового обстеження складається з таких елементів:
вибирається цільова величина, що підлягає вимірюванню (наприклад, частка підприємств, що використовують комп’ютери);
вибирається основа вибіркового спостереження — генеральна сукупність (наприклад, опубліковані списки, статистична звітність тощо); визначається структура вибірки (умови вибірки із генеральної сукупності); визначається метод вибірки (випадковий, пропорційний, фронтальний);
вибираються способи отримання інформації для визначення цільової величини (спостереження поведінки, дані з документів, відповіді на анкетні питання);
вибирається метод аналізу результатів вибіркового спостереження (наприклад, обчислення середньої зваженої або складання формули регресії, оцінка точності досліджень).
Подання даних. Дуже важливо, як буде подано дані для аналізу. Загальний підхід — подання даних має бути якомога простішим. Основні принципи подання даних такі:
Кількість спостережень. Загальний обсяг вибірки даних є у первісному звіті дослідника. Не слід формувати групи респондентів на основі підвибірок, що входять до загальної вибірки.
Основи класифікації. Результати опитування мають бути згруповані таким чином, щоб вони були доступні в поданні та розумінні. Особливо це стосується «вільних» питань або відповідей (на кшталт перше, друге або ваш варіант). Дослідник повинен розробити кодовані категорії, за якими групуватимуться ці «вільні» відповіді.
Недоцільна
точність. Не слід надавати даним більшого значення, ніж вони мають насправді.
Не потрібно подавати дані з
більшою точністю, ніж необхідно для аналізу. Корисність їх при цьому не
збільшиться, а сприйняття менеджером погіршиться;
Абсолютні та відносні дані. Дані можна подавати у вигляді їх абсолютних значень і відсоткових відношень. І ті, й інші можуть використовуватися в аналізі з різним успіхом залежно від виду досліджуваної проблеми. Найбільша цінність подання даних у вигляді відсоткових відношень полягає в тому, що можна безпосередньо порівнювати одну групу з іншою‚ однак не завжди зрозуміло, за яким правилом їх порівнювати. Це залежить від двох моментів: процедуру порівняння необхідно провести виходячи з власного уявлення про те, що відбувається в системі, яким чином вона залежить від досліджуваної проблеми.
Вибіркові розподіли. Вибірковий розподіл в узагальненому вигляді відображає варіацію характеристик усіх можливих випадкових вибірок даного обсягу з деякої сукупності спостережень. На практиці рідко здійснюється більше за одну випадкову вибірку, отже, вибірковий розподіл потрібно розглядати швидше як теоретичне поняття. Воно використовується при оцінюванні міри достовірності характеристик, отриманих унаслідок здійснення одиничної випадкової вибірки.
Теорія статистичних вибірок вивчає зміну окремих узагальнених вибіркових характеристик, таких як середня, дисперсія за різних способів формування вибірок.
Для кожного з різних узагальнюючих показників, таких як середня, дисперсія, коефіцієнт кореляції і т. д., можна побудувати свій вибірковий розподіл. Розглянемо вибіркові розподіли середньої, оскільки подібні розподіли є найбільш важливими і водночас найбільш простими.
Вибірковий розподіл середніх, отриманий за реалізації простих випадкових вибірок обсягу n, кожна з яких витягнута з однієї і тієї самої сукупності даних, має три простих властивості. Середня цього розподілу дорівнює середній для початкової сукупності; його форма наближується до форми нормального розподілу (це не стосується вибірок дуже малого обсягу); нарешті, його стандартне відхилення є стандартним відхиленням індивідуальних спостережень у початковій сукупності.
Значення дисперсії може бути розраховане на базі стандартного відхилення наявної вибірки. У цьому випадку, взагалі кажучи, має бути використаний t-розподіл Стьюдента, однак, якщо виключити вибірки дуже невеликого обсягу, то розподіл Стьюдента буде трохи відрізнятися від нормального розподілу зі стандартним відхиленням.
Величина стандартного відхилення характеризує розсіяння середніх значень різних вибірок обсягу n і звичайно називається стандартною помилкою середньої. Це одна з основних формул у теорії статистичних вибірок.
Різниця між середніми двох незалежних вибірок з обсягами nx та ny, витягнутих з однієї і тієї самої сукупності, має стандартну помилку:
,
де Sx та Sy — стандартне відхилення спостережень х та у.
Вибіркові розподіли інших узагальнених характеристик звичайно мають складніший вигляд, однак для вибірок великого обсягу їх форма наближається до форми нормального розподілу. Цей факт полегшує розв’язання проблем, з якими стикається дослідник у теорії статистичних вибірок.
Повторення експериментів. Щоб надати ізольованому результату наукове значення, необхідне повторення проведеного дослідження.
Якщо первинний результат не буде підтверджений, треба зробити висновок, що його не можна узагальнити принаймні за допомогою якого-небудь простого способу. Однак, якщо той самий результат буде отриманий і вдруге, то можна припустити, що він може виявитися ще більш загальним.
Просте встановлення можливості повторного відтворення деякого результату — це тільки перший крок. Але навіть невелика кількість успішних повторень раніше отриманого результату може сприяти істотному прогресу виконуваного дослідження, якщо умови, в яких кожний раз проводилося. спостереження, досить сильно різняться.
Ніяке дослідження не може бути знову відтворене в абсолютно тих самих умовах, що і раніше. Однак важливим є повторне відтворення отриманого раніше результату, а не реконструкція всіх характерних для попереднього дослідження умов спостереження. Дійсно, для з’ясування діапазону різних умов або факторів, за яких залишаються в силі отримані раніше результати, потрібне повторення проведеного дослідження за самих різних ситуацій. Отже, насамперед треба відповісти на питання: які фактори повинні й можуть мінятися?
Фактори, які можуть змінюватися. Отримавши абсолютно новий результат, звичайно намагаються повторити проведене дослідження, відтворюючи його якомога точніше: ті самі умови спостереження, той самий апарат, те саме джерело матеріалу; при цьому переслідується мета легко і швидко перевірити, чи можна відтворити той самий результат знову.
Щоб отримати ширше узагальнення, змінюють умови спостережень. Така зміна здійснюється доти, поки вона істотно не позначиться на результатах. Проте можна піти і далі цього уявного кордону. Це допоможе з’ясувати, чи дійсно тільки в даному діапазоні умов отриманий результат має узагальнюючий характер або ж цей діапазон може бути розширений ще більше.
Подальші дослідження мають бути сконцентровані на виявленні цього фактора (зміна інших факторів при цьому не повинна впливати на отримуваний результат). Конкретний фактор стає важливим у тому разі, коли його зміна дійсно впливає на результати.
Результат має отримати підтвердження й тоді, коли змінюється тільки один фактор. Ніяке одиничне дослідження не може дати остаточної вичерпної відповіді.
Статистичні обстеження. Вибіркові обстеження, або цензи, в своїй найпростішій формі є методами збирання даних, за яких дослідник не може впливати на характер варіації факторів. Подібні обстеження ведуть до отримання середніх статистичних показників, надійність яких повністю залежить від показності зібраних даних. Просте статистичне обстеження є методом, до якого вдаються в крайньому випадку, коли неможливо вдатися до якого-небудь іншого, конструктивнішого способу збирання інформації. Одна з проблем, що виникає при цьому, полягає в тому, що техніка простого репрезентативного вибіркового обстеження не забезпечує виконання головної вимоги — можливості повторення дослідження за різних умов. Наприклад, витягання двох вибірок із загальної статистичної сукупності не буде суворо незалежним повторенням, оскільки результати повинні збігтися з точністю до помилок випадкового вибору. Витягання двох вибірок за різних умов (наприклад, вибір з однієї і тієї самої сукупності людей, але в різні дні тижня) не є простим вибором, оскільки навмисна зміна емпіричних умов спостереження (вибір двох конкретних днів тижня) вносить у процес збирання інформації елемент регульованості, що має нестатистичну природу.
Цей набір показників більш змістовний, ніж проста середня. Уводячи елемент регулювання в процес збирання інформації, дослідник тим самим практично здійснює проведення декількох різних обстежень. Статистична репрезентативність необхідна тільки у випадках з нерегульованою варіацією в рамках кожного з цих обстежень. У більшості таких структурованих обстежень і цензів чисто статистичний елемент пов’язаний із забезпеченням гарантій того, що отримані результати міститимуть лише незначні систематичні помилки або ж не міститимуть їх зовсім.
Конкретні статистичні дослідження. Характер більшості конкретних статистичних досліджень значною мірою визначається безпосередньо самим дослідником. Він вибирає змінні, які мають вимірюватися, і різні умови, за яких він проводитиме це вимірювання. Він навіть може, не бажаючи того, дещо впливати на матеріал, з яким має намір працювати, причому впливати на результати дослідження. Однак звичайно дослідник при проведенні конкретного статистичного дослідження намагається, щоб подібний вплив не був істотним.
Багато які конкретні дослідження організовані так, що різні фактори змінюються одночасно, а не поодинці. Не просто встановити точну форму причинно-наслідкових зв’язків, що істотно сповільнює і утруднює успішне проведення досліджень.
Сила статистичного підходу полягає в тому, що за його допомогою значно простіше отримувати негативні результати. Іншими словами, він допомагає встановити, що деякий фактор не справляє впливу на явище, що вивчається. Одиничний результат має бути підтверджений або ж уточнений на базі інформації, отриманої за новими даними.
Контрольні експерименти. Експериментування часто сприяє прискоренню отримання результату в конкретних статистичних дослідженнях. У цьому випадку дослідник самостійно змінює або коригує вплив деяких факторів на явище, що вивчається. Експериментування має дві основні функції: здійснення штучного регулювання, що забезпечує ідентичність певних умов проведення різних досліджень, і штучної зміни умов, що дає змогу з’ясувати, що може статися за такої зміни. Однак експериментатор не може контролювати всі фактори в досліджуваній ситуації.
Планування експериментів. Іноді складніша схема проведення експериментів дає змогу здійснити замість одного експерименту серію окремих експериментів, забезпечуючи більш або менш схожі умови їх перебігу. У такому разі вдається значною мірою уникнути невизначеності, пов’язаної з інтерпретацією ізольованих результатів. Якщо вдається скористатися й рандомізацією, то ефект буде ще відчутнішим.
Організувати експеримент можна таким чином, що одночасно проводитиметься велика кількість різних експериментів, послідовно відмінних один від одного зміною тільки одного фактора. (У розробку такого методу великий внесок було зроблено Р. Фішером.) В організованих подібним чином експериментах необов’язково використовувати додаткову інформацію, наприклад, додаткові спостереження. Подібний «факторіальний» тип організації експерименту часто приводить до зменшення величини його статистичної помилки.
Попереднє планування експерименту, особливо з використанням рандомізації, зменшує невизначеність при інтерпретації отриманих результатів. У організованому відповідним чином експерименті може змінюватися більш як один фактор. Тому з допомогою одного дослідження можна отримати результати, що мають досить загальну природу.
Однак повторення експериментів за різних умов перетворюється на одну з форм конкретного статистичного дослідження, якщо зміна умов не може регулюватися в процесі здійснення експерименту. Таким чином, підхід, заснований на конкретних статистичних дослідженнях, а не на спеціально спланованих експериментах, залишається основною формою збирання наукової інформації.