10. Нормальная линейная модель парной (однофакторной) регрессии
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Общий вид нормальной (традиционной или классической) линейной модели парной (однофакторной) регрессии (Classical Normal Regression Model):
yi=β0+β1xi+εi,
где yi– результативные переменные,
xi – факторные переменные,
β0, β1 – параметры модели регрессии, подлежащие оцениванию;
εi – случайная ошибка модели регрессии.
При построении нормальной линейной модели парной регрессии учитываются пять условий:
1) факторная переменная xi – неслучайная или детерминированная величина, которая не зависит от распределения случайной ошибки модели регрессии εi;
2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:
3) дисперсия случайной ошибки модели регрессии постоянна для всех наблюдений:
4) между значениями случайных ошибок модели регрессии в любых двух наблюдениях отсутствует систематическая взаимосвязь, т. е. случайные ошибки модели регрессии не коррелированны между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю): Cov(εi,εj)=E(εi,εj)=0 (). Это условие выполняется в том случае, если исходные данные не являются временными рядами;
5) на основании третьего и четвёртого условий часто добавляется пятое условие, заключающееся в том, что случайная ошибка модели регрессии – это случайная величина, подчиняющейся нормальному закону распределения с нулевым математическим ожиданием и дисперсией G2: εi~N(0, G2).
Общий вид нормальной линейной модели парной регрессии в матричной форме:
Y= X* β+ ε,
где
– случайный вектор-столбец значений результативной переменной размерности n x 1;
– матрица значений факторной переменной размерности n x 2. Первый столбец является единичным, потому что в модели регрессии коэффициент β0 умножается на единицу;
– вектор-столбец неизвестных коэффициентов модели регрессии размерности 2 x 1;
– случайный вектор-столбец ошибок модели регрессии размерности n x 1.
Условия построения нормальной линейной модели парной регрессии, записанные в матричной форме:
1) факторная переменная xi – неслучайная или детерминированная величина, которая не зависит от распределения случайной ошибки модели регрессии βi;
2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:;
3) третье и четвёртое условия можно записать через ковариационную матрицы случайных ошибок нормальной линейной модели парной регрессии:
где G2 – дисперсия случайной ошибки модели регрессии ε;
In – единичная матрица размерности n x n.
Определение. Ковариацией называется показатель тесноты связи между переменными х и у, который рассчитывается по формуле:
где
– среднее арифметическое значение произведения факторного и результативного признаков;
Основными свойствами показателя ковариации являются:
а) ковариация переменной и константы равна нулю, т. е. cov(x,C)=0 (C=const);
б) ковариация переменной с самой собой равна дисперсии переменной, т. е. Cov(ε,ε)=G2(ε). По этой причине на диагонали ковариационной матрицы случайных ошибок нормальной линейной модели парной регрессии располагается дисперсия случайных ошибок;
4) случайная ошибка модели регрессии подчиняется нормальному закону распределения: εi~N(0, G2).
Общий вид нормальной (традиционной или классической) линейной модели парной (однофакторной) регрессии (Classical Normal Regression Model):
yi=β0+β1xi+εi,
где yi– результативные переменные,
xi – факторные переменные,
β0, β1 – параметры модели регрессии, подлежащие оцениванию;
εi – случайная ошибка модели регрессии.
При построении нормальной линейной модели парной регрессии учитываются пять условий:
1) факторная переменная xi – неслучайная или детерминированная величина, которая не зависит от распределения случайной ошибки модели регрессии εi;
2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:
3) дисперсия случайной ошибки модели регрессии постоянна для всех наблюдений:
4) между значениями случайных ошибок модели регрессии в любых двух наблюдениях отсутствует систематическая взаимосвязь, т. е. случайные ошибки модели регрессии не коррелированны между собой (ковариация случайных ошибок любых двух разных наблюдений равна нулю): Cov(εi,εj)=E(εi,εj)=0 (). Это условие выполняется в том случае, если исходные данные не являются временными рядами;
5) на основании третьего и четвёртого условий часто добавляется пятое условие, заключающееся в том, что случайная ошибка модели регрессии – это случайная величина, подчиняющейся нормальному закону распределения с нулевым математическим ожиданием и дисперсией G2: εi~N(0, G2).
Общий вид нормальной линейной модели парной регрессии в матричной форме:
Y= X* β+ ε,
где
– случайный вектор-столбец значений результативной переменной размерности n x 1;
– матрица значений факторной переменной размерности n x 2. Первый столбец является единичным, потому что в модели регрессии коэффициент β0 умножается на единицу;
– вектор-столбец неизвестных коэффициентов модели регрессии размерности 2 x 1;
– случайный вектор-столбец ошибок модели регрессии размерности n x 1.
Условия построения нормальной линейной модели парной регрессии, записанные в матричной форме:
1) факторная переменная xi – неслучайная или детерминированная величина, которая не зависит от распределения случайной ошибки модели регрессии βi;
2) математическое ожидание случайной ошибки модели регрессии равно нулю во всех наблюдениях:;
3) третье и четвёртое условия можно записать через ковариационную матрицы случайных ошибок нормальной линейной модели парной регрессии:
где G2 – дисперсия случайной ошибки модели регрессии ε;
In – единичная матрица размерности n x n.
Определение. Ковариацией называется показатель тесноты связи между переменными х и у, который рассчитывается по формуле:
где
– среднее арифметическое значение произведения факторного и результативного признаков;
Основными свойствами показателя ковариации являются:
а) ковариация переменной и константы равна нулю, т. е. cov(x,C)=0 (C=const);
б) ковариация переменной с самой собой равна дисперсии переменной, т. е. Cov(ε,ε)=G2(ε). По этой причине на диагонали ковариационной матрицы случайных ошибок нормальной линейной модели парной регрессии располагается дисперсия случайных ошибок;
4) случайная ошибка модели регрессии подчиняется нормальному закону распределения: εi~N(0, G2).