81. Стационарный процесс. Стационарный временной ряд. Белый шум

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

Временной ряд называется детерминированным, если значения уровней временного ряда точно определены какой-либо математической функцией, являющейся реализацией исследуемого процесса.

Временной ряд называется случайным, если уровни временного ряда могут быть описаны с помощью функции распределения вероятностей.

Таким образом, уровни временного ряда могут быть детерминированными или случайными величинами.

Уровни случайного временного ряда могут быть непрерывными и дискретными случайными величинами.

Случайная величинаХ называется дискретной, если множество её возможных значений является конечным или счётным. В качестве примера случайного временного ряда с дискретными уровнями может служить временной ряд, отражающий значения ежемесячной выдачи зарплаты рабочим.

Случайная величина Х называется непрерывной, если она может принимать любое значение из конечного или бесконечного интервала. В качестве примера случайного временного ряда с непрерывными уровнями может служить временной ряд, отражающий значения температуры воздуха, зарегистрированные с определённой периодичностью.

Стохастическим процессом называется процесс, который развивается во времени в соответствии с законами теории вероятностей.

К стохастическим процессам относится класс стационарных процессов.

Стохастический процесс называется стационарным, если его основные свойства остаются неизменными во времени.

Предположим, что исследуется временной ряд Х. Обозначим через xt уровень данного временного ряда. Тогда стационарный процесс будет характеризоваться следующими четырьмя свойствами:

1) математическое ожидание стационарного ряда E(yt) является постоянным, т. е. среднее значение временного ряда, вокруг которого изменяются уровни, является величиной постоянной:

2) дисперсия стационарного ряда является постоянной. Она характеризует вариацию уровней временного ряда относительно его среднего значения

3) автоковариация стационарного ряда с лагом l является постоянной, т. е. ковариация между значениями xt и xt+l, отделёнными интервалом в l единиц времени, определяется по формуле:

для стационарных рядов автоковариация зависит только от величины лага l, поэтому справедливо равенство вида:

4) коэффициенты автокорреляция стационарного ряда с лагом l являются постоянными. Следовательно, автокорреляция является нормированной автоковариацией, т. к. для стационарного процесса G2(y)=const:

Таким образом, коэффициент автокорреляции порядка l определяется по формуле:

Нестационарным временным рядом называется ряд, который не удовлетворяет вышеперечисленным свойствам.

Случайный процесс, называемый белым шумом, является частным случаем стационарных временных рядов.

Белым шумом называется случайная последовательность значений y1, y2,…,yN, если её математическое ожидание равно нулю, т.е. E(Yt)=0, где

её элементы являются некоррелированными (независимыми друг от друга) одинаково распределёнными величинами, и дисперсия является постоянной величиной D(Yt)=G2=const.

Белый шум – это теоретический процесс, который реально не существует, однако он представляет собой очень важную математическую модель, которая используется при решении множества практических задач.

Временной ряд называется детерминированным, если значения уровней временного ряда точно определены какой-либо математической функцией, являющейся реализацией исследуемого процесса.

Временной ряд называется случайным, если уровни временного ряда могут быть описаны с помощью функции распределения вероятностей.

Таким образом, уровни временного ряда могут быть детерминированными или случайными величинами.

Уровни случайного временного ряда могут быть непрерывными и дискретными случайными величинами.

Случайная величинаХ называется дискретной, если множество её возможных значений является конечным или счётным. В качестве примера случайного временного ряда с дискретными уровнями может служить временной ряд, отражающий значения ежемесячной выдачи зарплаты рабочим.

Случайная величина Х называется непрерывной, если она может принимать любое значение из конечного или бесконечного интервала. В качестве примера случайного временного ряда с непрерывными уровнями может служить временной ряд, отражающий значения температуры воздуха, зарегистрированные с определённой периодичностью.

Стохастическим процессом называется процесс, который развивается во времени в соответствии с законами теории вероятностей.

К стохастическим процессам относится класс стационарных процессов.

Стохастический процесс называется стационарным, если его основные свойства остаются неизменными во времени.

Предположим, что исследуется временной ряд Х. Обозначим через xt уровень данного временного ряда. Тогда стационарный процесс будет характеризоваться следующими четырьмя свойствами:

1) математическое ожидание стационарного ряда E(yt) является постоянным, т. е. среднее значение временного ряда, вокруг которого изменяются уровни, является величиной постоянной:

2) дисперсия стационарного ряда является постоянной. Она характеризует вариацию уровней временного ряда относительно его среднего значения

3) автоковариация стационарного ряда с лагом l является постоянной, т. е. ковариация между значениями xt и xt+l, отделёнными интервалом в l единиц времени, определяется по формуле:

для стационарных рядов автоковариация зависит только от величины лага l, поэтому справедливо равенство вида:

4) коэффициенты автокорреляция стационарного ряда с лагом l являются постоянными. Следовательно, автокорреляция является нормированной автоковариацией, т. к. для стационарного процесса G2(y)=const:

Таким образом, коэффициент автокорреляции порядка l определяется по формуле:

Нестационарным временным рядом называется ряд, который не удовлетворяет вышеперечисленным свойствам.

Случайный процесс, называемый белым шумом, является частным случаем стационарных временных рядов.

Белым шумом называется случайная последовательность значений y1, y2,…,yN, если её математическое ожидание равно нулю, т.е. E(Yt)=0, где

её элементы являются некоррелированными (независимыми друг от друга) одинаково распределёнными величинами, и дисперсия является постоянной величиной D(Yt)=G2=const.

Белый шум – это теоретический процесс, который реально не существует, однако он представляет собой очень важную математическую модель, которая используется при решении множества практических задач.