96. Модели с распределённым лагом

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

Моделью с распределённым лагом называется динамическая эконометрическая модель, в которую включены не только текущие, но и лаговые значения факторных переменных.

С помощью модели с распределённым лагом можно охарактеризовать влияние изменения факторной переменной х на дальнейшее изменение результативной переменной у, т. е. изменение х в момент времени t будет оказывать влияние на значение переменной у в течение L следующих моментов времени.

Пример модели с распределённым лагом:

yt=β0+β1xt+β2xt–1+…+βLxt–L+εt.

Краткосрочным мультипликатором называется коэффициент β1 модели с распределённым лагом

Краткосрочный мультипликатор характеризует среднее абсолютное изменение переменной yt при изменении переменной xt на единицу своего измерения в конкретный момент времени t при элиминировании влияния лаговых значений переменной х.

Коэффициент β2 модели с распределённым лагом характеризует среднее абсолютное изменение переменной yt в результате изменения переменной х на единицу своего измерения в момент времени t–1.

Промежуточным мультипликатором называется сумма коэффициентов β1и β2 модели с распределённым лагом.

Промежуточный мультипликатор характеризует совокупное влияние факторной переменной х на переменную у в момент времени (t+1). Таким образом, изменение переменной х на единицу в момент времени t вызывает изменение переменной у на β1 единиц в момент времени t и изменение переменной у на β2 в момент времени (t+1).

Средним лагом называется средний период времени, в течение которого будет происходить изменение результативной переменной у под влиянием изменения факторной переменной х в момент t:

Если величина среднего лага небольшая, то переменная у достаточно быстро реагирует на изменение факторной переменной х.

Если величина среднего лага большая, то факторная переменная х медленно воздействует на результативную переменную у.

Медианным лагом называется период времени, в течение которого с момента начала изменения факторной переменной х будет реализована половина её общего воздействия на результативную переменную у.

Оценки неизвестных коэффициентов модели с распределённым лагом традиционным методом наименьших квадратов рассчитать нельзя по трём причинами:

1) нарушение первого условия нормальной линейной модели регрессии, т. е. наличие корреляции между текущими и лаговыми значениями факторной переменной;

2) при большой величине лага L уменьшается количество наблюдений, по которым строится модель регрессии и увеличивается число факторных переменных (xt,xt–1,xt–2,…), что в конечном результате ведёт к потере числа степеней свободы в модели;

3) наличие проблема автокорреляции остатков.

Данные причины в итоге ведут к нестабильности оценок коэффициентов регрессии, вычисленных с помощью метода наименьших квадратов.

Оценки неизвестных коэффициентов моделей с распределённым лагом рассчитывают с помощью специальных методов, чаще всего с использованием метода Алмон и метода Койка.

Моделью с распределённым лагом называется динамическая эконометрическая модель, в которую включены не только текущие, но и лаговые значения факторных переменных.

С помощью модели с распределённым лагом можно охарактеризовать влияние изменения факторной переменной х на дальнейшее изменение результативной переменной у, т. е. изменение х в момент времени t будет оказывать влияние на значение переменной у в течение L следующих моментов времени.

Пример модели с распределённым лагом:

yt=β0+β1xt+β2xt–1+…+βLxt–L+εt.

Краткосрочным мультипликатором называется коэффициент β1 модели с распределённым лагом

Краткосрочный мультипликатор характеризует среднее абсолютное изменение переменной yt при изменении переменной xt на единицу своего измерения в конкретный момент времени t при элиминировании влияния лаговых значений переменной х.

Коэффициент β2 модели с распределённым лагом характеризует среднее абсолютное изменение переменной yt в результате изменения переменной х на единицу своего измерения в момент времени t–1.

Промежуточным мультипликатором называется сумма коэффициентов β1и β2 модели с распределённым лагом.

Промежуточный мультипликатор характеризует совокупное влияние факторной переменной х на переменную у в момент времени (t+1). Таким образом, изменение переменной х на единицу в момент времени t вызывает изменение переменной у на β1 единиц в момент времени t и изменение переменной у на β2 в момент времени (t+1).

Средним лагом называется средний период времени, в течение которого будет происходить изменение результативной переменной у под влиянием изменения факторной переменной х в момент t:

Если величина среднего лага небольшая, то переменная у достаточно быстро реагирует на изменение факторной переменной х.

Если величина среднего лага большая, то факторная переменная х медленно воздействует на результативную переменную у.

Медианным лагом называется период времени, в течение которого с момента начала изменения факторной переменной х будет реализована половина её общего воздействия на результативную переменную у.

Оценки неизвестных коэффициентов модели с распределённым лагом традиционным методом наименьших квадратов рассчитать нельзя по трём причинами:

1) нарушение первого условия нормальной линейной модели регрессии, т. е. наличие корреляции между текущими и лаговыми значениями факторной переменной;

2) при большой величине лага L уменьшается количество наблюдений, по которым строится модель регрессии и увеличивается число факторных переменных (xt,xt–1,xt–2,…), что в конечном результате ведёт к потере числа степеней свободы в модели;

3) наличие проблема автокорреляции остатков.

Данные причины в итоге ведут к нестабильности оценок коэффициентов регрессии, вычисленных с помощью метода наименьших квадратов.

Оценки неизвестных коэффициентов моделей с распределённым лагом рассчитывают с помощью специальных методов, чаще всего с использованием метода Алмон и метода Койка.