63. Устранение автокорреляции остатков модели регрессии
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
В связи с тем, что наличие в модели регрессии автокорреляции между остатками модели может привести к негативным результатам всего процесса оценивания неизвестных коэффициентов модели, автокорреляция остатков должна быть устранена.
Устранить автокорреляцию остатков модели регрессии можно с помощью включения в модель автокорреляционного параметра, однако на практике данный подход реализовать весьма затруднительно, потому что оценка коэффициента автокорреляции является величиной заранее неизвестной.
Авторегрессионной схемой первого порядка называется метод устранения автокорреляции первого порядка между соседними членами остаточного ряда в линейных моделях регрессии либо моделях регрессии, которые можно привести к линейному виду.
На практике применение авторегрессионной схемы первого порядка требует априорного знания величины коэффициента автокорреляции. Однако в связи с тем, что величина данного коэффициента заранее неизвестна, в качестве его оценки рассчитывается выборочный коэффициент остатков первого порядка ρ1.
Выборочный коэффициент остатков первого порядка ρ1 рассчитывается по формуле:
В общем случае коэффициент автокорреляции порядка l рассчитывается по формуле:
где l – временной лаг;
T – число наблюдений;
t – момент времени, в который осуществлялось наблюдение;
– среднее значение исходного временного ряда.
Предположим, что на основе собранных наблюдений была построена линейная парная модель регрессии:
yt=β0+β1xt+εt.(1)
Рассмотрим применение авторегрессионной схемы первого порядка на примере данной модели.
Исходная линейная модель парной регрессии с учётом процесса автокорреляции остатков первого порядка в момент времени t может быть представлена в виде:
yt=β0+β1xt+ρεt-1+νt,.
εt=ρεt-1+νt,
где ρ – коэффициент автокорреляции, |ρ|<1;
νt – независимые, одинаково распределённые случайные величины с нулевым математическим ожиданием и дисперсией G2(νt).
Модель регрессии в момент времени (t-1) может быть представлена виде:
yt-1=β0+β1xt-1+εt-1.(2)
Если модель регрессии в момент времени (t-1) умножить на величину коэффициента автокорреляции β и вычесть её из исходной модели регрессии в момент времени t, то в результате мы получим преобразованную модель регрессии, учитывающую процесс автокорреляции первого порядка:
Для более наглядного представления преобразованной модели воспользуемся методом замен:
Yt=yt–ρyt-1;
Xt=xt–ρxt-1;
Zt=1– ρ.
В результате преобразованная модель регрессии примет вид:
Yt= Zt* β0+β1 Xt+ νt. (4)
В преобразованной модели регрессии случайная ошибка βt не подвержена процессу автокорреляции, поэтому можно считать автокорреляционную зависимость остатков модели устранённой.
Авторегрессионную схему первого порядка можно применить ко всем строкам матрицы данных Х, кроме первого наблюдения. Однако если не вычислять Y1 и X1, то подобная потеря в небольшой выборке может привести к неэффективности оценок коэффициентов преобразованной модели регрессии. Данная проблема решается с помощью поправки Прайса-Уинстена. Введём следующие обозначения:
Тогда оценки неизвестных коэффициентов преобразованной модели регрессии (4) можно рассчитать с помощью классического метода наименьших квадратов:
Оценки коэффициентов исходной модели регрессии (1) определяются по формулам:
В результате оцененная модель регрессии будет иметь вид:
В связи с тем, что наличие в модели регрессии автокорреляции между остатками модели может привести к негативным результатам всего процесса оценивания неизвестных коэффициентов модели, автокорреляция остатков должна быть устранена.
Устранить автокорреляцию остатков модели регрессии можно с помощью включения в модель автокорреляционного параметра, однако на практике данный подход реализовать весьма затруднительно, потому что оценка коэффициента автокорреляции является величиной заранее неизвестной.
Авторегрессионной схемой первого порядка называется метод устранения автокорреляции первого порядка между соседними членами остаточного ряда в линейных моделях регрессии либо моделях регрессии, которые можно привести к линейному виду.
На практике применение авторегрессионной схемы первого порядка требует априорного знания величины коэффициента автокорреляции. Однако в связи с тем, что величина данного коэффициента заранее неизвестна, в качестве его оценки рассчитывается выборочный коэффициент остатков первого порядка ρ1.
Выборочный коэффициент остатков первого порядка ρ1 рассчитывается по формуле:
В общем случае коэффициент автокорреляции порядка l рассчитывается по формуле:
где l – временной лаг;
T – число наблюдений;
t – момент времени, в который осуществлялось наблюдение;
– среднее значение исходного временного ряда.
Предположим, что на основе собранных наблюдений была построена линейная парная модель регрессии:
yt=β0+β1xt+εt.(1)
Рассмотрим применение авторегрессионной схемы первого порядка на примере данной модели.
Исходная линейная модель парной регрессии с учётом процесса автокорреляции остатков первого порядка в момент времени t может быть представлена в виде:
yt=β0+β1xt+ρεt-1+νt,.
εt=ρεt-1+νt,
где ρ – коэффициент автокорреляции, |ρ|<1;
νt – независимые, одинаково распределённые случайные величины с нулевым математическим ожиданием и дисперсией G2(νt).
Модель регрессии в момент времени (t-1) может быть представлена виде:
yt-1=β0+β1xt-1+εt-1.(2)
Если модель регрессии в момент времени (t-1) умножить на величину коэффициента автокорреляции β и вычесть её из исходной модели регрессии в момент времени t, то в результате мы получим преобразованную модель регрессии, учитывающую процесс автокорреляции первого порядка:
Для более наглядного представления преобразованной модели воспользуемся методом замен:
Yt=yt–ρyt-1;
Xt=xt–ρxt-1;
Zt=1– ρ.
В результате преобразованная модель регрессии примет вид:
Yt= Zt* β0+β1 Xt+ νt. (4)
В преобразованной модели регрессии случайная ошибка βt не подвержена процессу автокорреляции, поэтому можно считать автокорреляционную зависимость остатков модели устранённой.
Авторегрессионную схему первого порядка можно применить ко всем строкам матрицы данных Х, кроме первого наблюдения. Однако если не вычислять Y1 и X1, то подобная потеря в небольшой выборке может привести к неэффективности оценок коэффициентов преобразованной модели регрессии. Данная проблема решается с помощью поправки Прайса-Уинстена. Введём следующие обозначения:
Тогда оценки неизвестных коэффициентов преобразованной модели регрессии (4) можно рассчитать с помощью классического метода наименьших квадратов:
Оценки коэффициентов исходной модели регрессии (1) определяются по формулам:
В результате оцененная модель регрессии будет иметь вид: