76. Сезонные и циклические компоненты временного ряда
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Для построения адекватной модели временного ряда необходимо охарактеризовать сезонные и циклические компоненты временного ряда. К основным методам моделирования сезонных и циклических колебаний относятся:
1) метод вычисления сезонной компоненты и построение аддитивной или мультипликативной модели временного ряда;
2) метод применения сезонных фиктивных переменных;
3) метод анализа сезонных колебаний с помощью автокорреляционной функции;
4) метод, основанный на использовании одномерных рядов Фурье.
В связи с тем, что моделирование сезонных и циклических колебаний происходит аналогично, применение данных методов мы будем рассматривать на примере моделирования сезонных колебаний.
Аддитивная модель временного ряда стоится в том случае, если амплитуда сезонных колебаний не меняется во времени:
yt=Tt+St+εt,
где T – это трендовая компонента;
S – это сезонная компонента;
ε – случайный шум.
Мультипликативная модель временного ряда стоится в том случае, если амплитуда сезонных колебаний изменяется во времени:
yt=Tt*St+εt.
Предположим, что задача состоит в исследовании временного ряда Xij, где i – это номер сезона (периода времени внутри года, например, месяца или квартала),
L – число сезонов в году, j – номер года,
m – общее количество лет. Количество уровней исходного временного ряда равно n=L*m.
Прежде чем рассчитывать сезонную компоненту, исходный временной ряд необходимо выровнять. Для этого применяются методы механического выравнивания, к которым относятся:
1) метод скользящих средних;
2) метод экспоненциального сглаживания;
3) метод медианного сглаживания и др.
Результатом процедуры сглаживания будет временной ряд выровненных значений
не содержащих сезонной компоненты.
Если временной ряд представлен аддитивной моделью, то в качестве сезонной компоненты используется показатель абсолютного отклонения – Sai. Сумма всех сезонных компонент, т.е. показателей абсолютных отклонений Sai. должна быть равна нулю.
Если временной ряд представлен мультипликативной моделью, то в качестве сезонной компоненты используется индекс сезонности – Isi. Произведение всех сезонных компонент, т. е. индексов сезонности Isi, должно быть равно единице.
Показатель абсолютного отклонения в i-том сезоне рассчитывается как среднее арифметическое из отклонений фактического и выровненного уровней временного ряда:
Индекс сезонности в i-том сезоне рассчитывается как среднее арифметическое из отношений фактического уровня временного ряда к выровненному:
Если при построении аддитивной модели временного ряда сумма всех абсолютных отклонений не равна нулю, то рассчитываются скорректированные значения сезонных компонент по формуле:
где L – общее количество сезонных компонент.
На следующем этапе построения модели временного ряда осуществляется расчёт трендовой компоненты с помощью метода аналитического выравнивания функциями времени или кривыми роста. Данный метод выравнивания применяют не к исходному временному ряду, а к временному ряду с исключённой сезонной компонентой. При этом уровни исходного временного ряда корректируются на величину сезонной компоненты следующим образом:
1) для аддитивной модели из исходных уровней вычитаются показатели абсолютных отклонений Sai;
2) для мультипликативной модели уровни исходного временного ряда делятся на индексы сезонности Isi.
Для построения адекватной модели временного ряда необходимо охарактеризовать сезонные и циклические компоненты временного ряда. К основным методам моделирования сезонных и циклических колебаний относятся:
1) метод вычисления сезонной компоненты и построение аддитивной или мультипликативной модели временного ряда;
2) метод применения сезонных фиктивных переменных;
3) метод анализа сезонных колебаний с помощью автокорреляционной функции;
4) метод, основанный на использовании одномерных рядов Фурье.
В связи с тем, что моделирование сезонных и циклических колебаний происходит аналогично, применение данных методов мы будем рассматривать на примере моделирования сезонных колебаний.
Аддитивная модель временного ряда стоится в том случае, если амплитуда сезонных колебаний не меняется во времени:
yt=Tt+St+εt,
где T – это трендовая компонента;
S – это сезонная компонента;
ε – случайный шум.
Мультипликативная модель временного ряда стоится в том случае, если амплитуда сезонных колебаний изменяется во времени:
yt=Tt*St+εt.
Предположим, что задача состоит в исследовании временного ряда Xij, где i – это номер сезона (периода времени внутри года, например, месяца или квартала),
L – число сезонов в году, j – номер года,
m – общее количество лет. Количество уровней исходного временного ряда равно n=L*m.
Прежде чем рассчитывать сезонную компоненту, исходный временной ряд необходимо выровнять. Для этого применяются методы механического выравнивания, к которым относятся:
1) метод скользящих средних;
2) метод экспоненциального сглаживания;
3) метод медианного сглаживания и др.
Результатом процедуры сглаживания будет временной ряд выровненных значений
не содержащих сезонной компоненты.
Если временной ряд представлен аддитивной моделью, то в качестве сезонной компоненты используется показатель абсолютного отклонения – Sai. Сумма всех сезонных компонент, т.е. показателей абсолютных отклонений Sai. должна быть равна нулю.
Если временной ряд представлен мультипликативной моделью, то в качестве сезонной компоненты используется индекс сезонности – Isi. Произведение всех сезонных компонент, т. е. индексов сезонности Isi, должно быть равно единице.
Показатель абсолютного отклонения в i-том сезоне рассчитывается как среднее арифметическое из отклонений фактического и выровненного уровней временного ряда:
Индекс сезонности в i-том сезоне рассчитывается как среднее арифметическое из отношений фактического уровня временного ряда к выровненному:
Если при построении аддитивной модели временного ряда сумма всех абсолютных отклонений не равна нулю, то рассчитываются скорректированные значения сезонных компонент по формуле:
где L – общее количество сезонных компонент.
На следующем этапе построения модели временного ряда осуществляется расчёт трендовой компоненты с помощью метода аналитического выравнивания функциями времени или кривыми роста. Данный метод выравнивания применяют не к исходному временному ряду, а к временному ряду с исключённой сезонной компонентой. При этом уровни исходного временного ряда корректируются на величину сезонной компоненты следующим образом:
1) для аддитивной модели из исходных уровней вычитаются показатели абсолютных отклонений Sai;
2) для мультипликативной модели уровни исходного временного ряда делятся на индексы сезонности Isi.