77. Сезонные фиктивные переменные
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Метод сезонных фиктивных переменных относится к методам моделирования сезонных компонент временного ряда. Суть данного метода заключается в построении модели регрессии, которая наряду с фактором времени включает сезонные фиктивные переменные.
Фиктивной переменной (dummy variable) называется атрибутивный или качественный фактор, представленный с помощью определённого цифрового кода.
Моделью регрессии с переменной структурой называется модель регрессии, включающая в качестве факторной (факторных) переменных фиктивную переменную.
Предположим, что задача состоит в исследовании временного ряда Xij, где i – это номер сезона (периода времени внутри года, например, месяца или квартала),
L – число сезонов в году, j – номер года,
m – общее количество лет. Количество уровней исходного временного ряда равно n=L*m.
При построении модели регрессии с переменной структурой необходимо учитывать, что число сезонных фиктивных переменных всегда должно быть на единицу меньше сезонов внутри года, т. е. должно быть равно величине L-1. Например, при моделировании годовых данных модель регрессии помимо фактора времени должна содержать одиннадцать фиктивных компонент (12-1). При моделировании поквартальных данных модель регрессии должна содержать три фиктивные компоненты (4-1) и т. д.
Каждому из сезонов соответствует определённое сочетание фиктивных переменных. Сезон, для которого значения всех фиктивных переменных равны нулю, является базой сравнения. Для остальных сезонов одна из фиктивных переменных принимает значение, равное единице. Например, если имеются поквартальные данные, то значения фиктивных переменных D2,D3,D4 будут принимать следующие значения для каждого из кварталов:
Тогда общий вид модели регрессии с переменной структурой будет иметь вид:
yt=β0+ β1*t+δ2*D2+δ3*D3+δ4*D4+εt.
Данная модель регрессии представляет собой одну из разновидностей аддитивной модели временного ряда.
На основе общей модели регрессии с переменной структурой можно составить базисную модель или модель тренда для первого квартала:
yt=β0+ β1*t+εt.
Также на основе общей модели регрессии с переменной структурой можно составить частные модели регрессии:
1) частная модель регрессии для второго квартала:
yt=β0+ β1*t+δ2+εt;
2) частная модель регрессии для третьего квартала:
yt=β0+ β1*t+δ3+εt;
3) частная модель регрессии для четвёртого квартала:
yt=β0+ β1*t+δ4+εt.
Данные частные модели регрессии отличаются друг от друга только на величину свободного члена δi.
Коэффициент β1 характеризует среднее абсолютное изменение уровней временного ряда под влиянием основной тенденции.
Сезонная компонента для каждого сезона рассчитывается как разность между средним значением свободных членов всех частных моделей регрессий и значением постоянного члена одной из моделей.
Среднее значение свободных членов всех частных моделей регрессий рассчитывается по формуле:
Для поквартальных данных оценка сезонных отклонений осуществляется по формулам:
1) оценка сезонного отклонения для первого квартала:
2) оценка сезонного отклонения для второго квартала:
3) оценка сезонного отклонения для третьего квартала:
4) оценка сезонного отклонения для четвёртого квартала:
Сумма сезонных отклонений должна равняться нулю.
Метод сезонных фиктивных переменных относится к методам моделирования сезонных компонент временного ряда. Суть данного метода заключается в построении модели регрессии, которая наряду с фактором времени включает сезонные фиктивные переменные.
Фиктивной переменной (dummy variable) называется атрибутивный или качественный фактор, представленный с помощью определённого цифрового кода.
Моделью регрессии с переменной структурой называется модель регрессии, включающая в качестве факторной (факторных) переменных фиктивную переменную.
Предположим, что задача состоит в исследовании временного ряда Xij, где i – это номер сезона (периода времени внутри года, например, месяца или квартала),
L – число сезонов в году, j – номер года,
m – общее количество лет. Количество уровней исходного временного ряда равно n=L*m.
При построении модели регрессии с переменной структурой необходимо учитывать, что число сезонных фиктивных переменных всегда должно быть на единицу меньше сезонов внутри года, т. е. должно быть равно величине L-1. Например, при моделировании годовых данных модель регрессии помимо фактора времени должна содержать одиннадцать фиктивных компонент (12-1). При моделировании поквартальных данных модель регрессии должна содержать три фиктивные компоненты (4-1) и т. д.
Каждому из сезонов соответствует определённое сочетание фиктивных переменных. Сезон, для которого значения всех фиктивных переменных равны нулю, является базой сравнения. Для остальных сезонов одна из фиктивных переменных принимает значение, равное единице. Например, если имеются поквартальные данные, то значения фиктивных переменных D2,D3,D4 будут принимать следующие значения для каждого из кварталов:
Тогда общий вид модели регрессии с переменной структурой будет иметь вид:
yt=β0+ β1*t+δ2*D2+δ3*D3+δ4*D4+εt.
Данная модель регрессии представляет собой одну из разновидностей аддитивной модели временного ряда.
На основе общей модели регрессии с переменной структурой можно составить базисную модель или модель тренда для первого квартала:
yt=β0+ β1*t+εt.
Также на основе общей модели регрессии с переменной структурой можно составить частные модели регрессии:
1) частная модель регрессии для второго квартала:
yt=β0+ β1*t+δ2+εt;
2) частная модель регрессии для третьего квартала:
yt=β0+ β1*t+δ3+εt;
3) частная модель регрессии для четвёртого квартала:
yt=β0+ β1*t+δ4+εt.
Данные частные модели регрессии отличаются друг от друга только на величину свободного члена δi.
Коэффициент β1 характеризует среднее абсолютное изменение уровней временного ряда под влиянием основной тенденции.
Сезонная компонента для каждого сезона рассчитывается как разность между средним значением свободных членов всех частных моделей регрессий и значением постоянного члена одной из моделей.
Среднее значение свободных членов всех частных моделей регрессий рассчитывается по формуле:
Для поквартальных данных оценка сезонных отклонений осуществляется по формулам:
1) оценка сезонного отклонения для первого квартала:
2) оценка сезонного отклонения для второго квартала:
3) оценка сезонного отклонения для третьего квартала:
4) оценка сезонного отклонения для четвёртого квартала:
Сумма сезонных отклонений должна равняться нулю.