94. Динамические эконометрические модели

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

Динамической эконометрической моделью называется модель, которая в настоящий момент времени учитывает значения входящих в неё переменных, относящихся не только к текущему, но и к предыдущему моментам времени.

В качестве примера динамических эконометрических моделей можно привести модели вида:

yt=f(xt,xt–l),

yt=f(xt,yt–l).

Модель регрессии вида:

yt=f(x1…xn)=f(xi)не относится к динамическим эконометрическим моделям.

1) Динамические эконометрические модели делятся на два основных типа:

2) динамические модели, в которых значения переменных, относящихся к прошлым моментам времени (лаговые значения), включены в модель с текущими значениями этих переменных. К таким моделям относятся:

а) модель авторегрессии;

б) модель с распределённым лагом.

Моделью авторегрессии называется динамическая эконометрическая модель, в которой в качестве факторных переменных содержатся лаговые значения результативной переменной.

Пример модели авторегрессии:

yt=β0+β1xt+δ1yt–1+εt.

Моделью с распределённым лагом называется динамическая эконометрическая модель, в которую включены не только текущие, но и лаговые значения факторных переменных.

Пример модели с распределённым лагом:

yt=β0+β1xt+β2xt–1+…+βLxt–L+εt.

где L – это величина временного лага (запаздывания) между рядами;

3) динамические модели, в которые входят переменные, отражающие предполагаемый или желаемый уровень результативной переменной или одной из факторных переменных в определённый момент времени (t+1). Величина желаемого уровня является неизвестной и рассчитывается на основании той информации, которая имеется в наличии на предшествующий момент времени (t). В зависимости от способа расчёта желаемых переменных различают следующие виды моделей:

а) модель адаптивных ожиданий (МАО);

б) модель частичной (неполной) корректировки (МЧК)

Моделью адаптивных ожиданий называется динамическая эконометрическая модель, которая учитывает предполагаемое или желаемое значение факторной переменной

Общий вид модели адаптивных ожиданий:

Примером модели адаптивных ожиданий является модель зависимости предполагаемой в будущем периоде (t+1) индексации заработных плат и пенсий на текущие цены.

Моделью частичной (неполной) корректировки называется динамическая эконометрическая модель, которая учитывает предполагаемое (или желаемое) значение результативной переменной

Общий вид модели частичной корректировки:

Примером модели частичной корректировки является модель Литнера, которая отражает зависимость желаемого объёма дивидендов

от фактического текущего объёма прибыли xt.

Неизвестные коэффициенты динамических эконометрических моделей нельзя рассчитать с помощью традиционного метода наименьших квадратов, потому что они не будут удовлетворять свойствам несмещённости, состоятельности и эффективности.

Неизвестные коэффициенты моделей авторегрессии оцениваются с помощью метода инструментальных переменных.

Для моделей с распределённым лагом в зависимости от структуры лага для оценивания неизвестных коэффициентов применяются метод Алмон и метод Койка. Суть данных методов состоит преобразовании исходной модели с распределённым лагом к модели авторегрессии, оценки неизвестных параметров которой можно рассчитать с помощью метода инструментальных переменных.

Для определения оценок неизвестных коэффициентов модели адаптивных ожиданий и модели частичной корректировки их также преобразуют в модели авторегрессии.

Динамической эконометрической моделью называется модель, которая в настоящий момент времени учитывает значения входящих в неё переменных, относящихся не только к текущему, но и к предыдущему моментам времени.

В качестве примера динамических эконометрических моделей можно привести модели вида:

yt=f(xt,xt–l),

yt=f(xt,yt–l).

Модель регрессии вида:

yt=f(x1…xn)=f(xi)не относится к динамическим эконометрическим моделям.

1) Динамические эконометрические модели делятся на два основных типа:

2) динамические модели, в которых значения переменных, относящихся к прошлым моментам времени (лаговые значения), включены в модель с текущими значениями этих переменных. К таким моделям относятся:

а) модель авторегрессии;

б) модель с распределённым лагом.

Моделью авторегрессии называется динамическая эконометрическая модель, в которой в качестве факторных переменных содержатся лаговые значения результативной переменной.

Пример модели авторегрессии:

yt=β0+β1xt+δ1yt–1+εt.

Моделью с распределённым лагом называется динамическая эконометрическая модель, в которую включены не только текущие, но и лаговые значения факторных переменных.

Пример модели с распределённым лагом:

yt=β0+β1xt+β2xt–1+…+βLxt–L+εt.

где L – это величина временного лага (запаздывания) между рядами;

3) динамические модели, в которые входят переменные, отражающие предполагаемый или желаемый уровень результативной переменной или одной из факторных переменных в определённый момент времени (t+1). Величина желаемого уровня является неизвестной и рассчитывается на основании той информации, которая имеется в наличии на предшествующий момент времени (t). В зависимости от способа расчёта желаемых переменных различают следующие виды моделей:

а) модель адаптивных ожиданий (МАО);

б) модель частичной (неполной) корректировки (МЧК)

Моделью адаптивных ожиданий называется динамическая эконометрическая модель, которая учитывает предполагаемое или желаемое значение факторной переменной

Общий вид модели адаптивных ожиданий:

Примером модели адаптивных ожиданий является модель зависимости предполагаемой в будущем периоде (t+1) индексации заработных плат и пенсий на текущие цены.

Моделью частичной (неполной) корректировки называется динамическая эконометрическая модель, которая учитывает предполагаемое (или желаемое) значение результативной переменной

Общий вид модели частичной корректировки:

Примером модели частичной корректировки является модель Литнера, которая отражает зависимость желаемого объёма дивидендов

от фактического текущего объёма прибыли xt.

Неизвестные коэффициенты динамических эконометрических моделей нельзя рассчитать с помощью традиционного метода наименьших квадратов, потому что они не будут удовлетворять свойствам несмещённости, состоятельности и эффективности.

Неизвестные коэффициенты моделей авторегрессии оцениваются с помощью метода инструментальных переменных.

Для моделей с распределённым лагом в зависимости от структуры лага для оценивания неизвестных коэффициентов применяются метод Алмон и метод Койка. Суть данных методов состоит преобразовании исходной модели с распределённым лагом к модели авторегрессии, оценки неизвестных параметров которой можно рассчитать с помощью метода инструментальных переменных.

Для определения оценок неизвестных коэффициентов модели адаптивных ожиданий и модели частичной корректировки их также преобразуют в модели авторегрессии.