45. Показатели корреляции и детерминации для нелинейных моделей регрессии
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Индексом корреляции для нелинейных форм связи называется коэффициент корреляции, который вычисляется для оценки качества построенной нелинейной модели регрессии.
Индекс корреляции для нелинейных форм вычисляется с помощью теоремы о разложении дисперсий по формуле:
где G2(y) – это общая дисперсия зависимой переменной;
σ2(y) – это объяснённая с помощью построенной модели регрессии дисперсия переменной у, которая рассчитывается по формуле:
δ2(y) – необъяснённая или остаточная дисперсия переменной у, которая рассчитывается по формуле:
Также индекс корреляции для нелинейных форм можно рассчитать с помощью теоремы о разложении сумм квадратов по формуле:
где RSS (Regression Sum Square) – сумма квадратов объяснённой регрессии:
ESS (Error Sum Square) – сумма квадратов остатков модели множественной регрессии с n независимыми переменными:
TSS (TotalSumSquare) – общая сумма квадратов модели множественной регрессии с n независимыми переменными:
Индекс корреляции для нелинейных форм связи изменяется в пределах от нуля до единицы. С его помощью нельзя охарактеризовать направление связи между результативной и факторными переменными. Чем ближе значение индекса корреляции для нелинейных форм связи к единице, тем сильнее взаимосвязь между результативной и независимыми переменными, и наоборот, чем ближе значение индекса корреляции для нелинейных форм связи к нулю, тем слабее взаимосвязь между результативной и независимыми переменными.
Индексом детерминации называется квадрат индекса корреляции для нелинейных форм связи.
Расчёт индекса детерминации с помощью теоремы о разложении дисперсий:
Расчёт индекса детерминации с помощью теоремы о разложении сумм квадратов:
Индекс детерминации характеризует, на сколько процентов построенная модель регрессии объясняет вариацию значений результативной переменной относительно своего среднего уровня, т. е. показывает долю общей дисперсии результативной переменной, объяснённой вариацией факторных переменных, включённых в модель регрессии.
Коэффициент множественной детерминации также называется количественной характеристикой объяснённой построенной моделью регрессии дисперсии результативной переменной. Чем больше значение коэффициента множественной детерминации, тем лучше построенная модель регрессии характеризует взаимосвязь между переменными.
Индексом корреляции для нелинейных форм связи называется коэффициент корреляции, который вычисляется для оценки качества построенной нелинейной модели регрессии.
Индекс корреляции для нелинейных форм вычисляется с помощью теоремы о разложении дисперсий по формуле:
где G2(y) – это общая дисперсия зависимой переменной;
σ2(y) – это объяснённая с помощью построенной модели регрессии дисперсия переменной у, которая рассчитывается по формуле:
δ2(y) – необъяснённая или остаточная дисперсия переменной у, которая рассчитывается по формуле:
Также индекс корреляции для нелинейных форм можно рассчитать с помощью теоремы о разложении сумм квадратов по формуле:
где RSS (Regression Sum Square) – сумма квадратов объяснённой регрессии:
ESS (Error Sum Square) – сумма квадратов остатков модели множественной регрессии с n независимыми переменными:
TSS (TotalSumSquare) – общая сумма квадратов модели множественной регрессии с n независимыми переменными:
Индекс корреляции для нелинейных форм связи изменяется в пределах от нуля до единицы. С его помощью нельзя охарактеризовать направление связи между результативной и факторными переменными. Чем ближе значение индекса корреляции для нелинейных форм связи к единице, тем сильнее взаимосвязь между результативной и независимыми переменными, и наоборот, чем ближе значение индекса корреляции для нелинейных форм связи к нулю, тем слабее взаимосвязь между результативной и независимыми переменными.
Индексом детерминации называется квадрат индекса корреляции для нелинейных форм связи.
Расчёт индекса детерминации с помощью теоремы о разложении дисперсий:
Расчёт индекса детерминации с помощью теоремы о разложении сумм квадратов:
Индекс детерминации характеризует, на сколько процентов построенная модель регрессии объясняет вариацию значений результативной переменной относительно своего среднего уровня, т. е. показывает долю общей дисперсии результативной переменной, объяснённой вариацией факторных переменных, включённых в модель регрессии.
Коэффициент множественной детерминации также называется количественной характеристикой объяснённой построенной моделью регрессии дисперсии результативной переменной. Чем больше значение коэффициента множественной детерминации, тем лучше построенная модель регрессии характеризует взаимосвязь между переменными.