85. Критерий Дикки-Фуллера проверки наличия единичных корней
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Проверкой наличия единичных корней называется задача проверки основной гипотезы вида
H0:ρ=0 в модели авторегрессии первого порядка:
yt=a+ρyt–1+εt.
Для данного ряда справедливы следующие предположения:
1) временной ряд yt является стационарным, если выполняется условие – 1‹ρ‹1;
2) временной ряд yt является нестационарным и представляет собой модель со случайным трендом, если выполняется условие ρ=1;
3) временной ряд yt также является нестационарным, если выполняется условие ρ›0.
Таким образом, гипотеза о стационарности временного ряда yt состоит в проверке основной гипотезы вида H0:ρ=1.
Критерий Дикки-Фуллера используется при проверке гипотезы о наличия единичных корней.
При этом выдвигается основная гипотеза вида H0:ρ=1 для модели авторегрессии первого порядка:
yt=a+ρyt–1+εt.
Однако на следующем этапе оценивается не эта модель авторегрессии, а модель, которая получается после перехода к первым разностям:
Δyt=δyt-1+εt,
где δ=ρ–1.
Проверка основной гипотезы вида H0:ρ=1 для исходной модели авторегрессии первого порядка аналогична проверке гипотезы H0:δ=0 для полученной модели. Проверка данной гипотезы может осуществляться для трёх типов регрессионных уравнений:
Δyt=δyt-1+εt;(1)
Δyt=а+δyt-1+εt; (2)
Δyt=а+δyt-1+βt+εt. (3)
Данные модели регрессии отличаются только наличием членов модели a и βt.
Первая модель является моделью случайного тренда, во вторую модель включается свободный член a, являющийся коэффициентом случайного тренда. В третью модель включены и коэффициент случайного тренда, и коэффициент линейного временного тренда βt.
Проверка основной гипотезы H0:δ=0 состоит в оценивании методом наименьших квадратов одной или нескольких из моделей регрессии 1, 2, 3 для получения оценки и её стандартной ошибки.
Наблюдаемое значение t-критерия для проверки основной гипотезы вида H0:δ=0 состоит в оценивании методом наименьших квадратов одной или нескольких из моделей регрессии 1, 2, 3 для получения оценки
и её стандартной ошибки.
Наблюдаемое значение t-критерия для проверки основной гипотезы вида H0:β=0 рассчитывают по формуле:
где
– стандартная ошибка оценки
Однако критическое значение t-критерия в данном случае нельзя определить по таблице распределения Стьюдента. Дикки и Фуллер провели исследования, в результате которых определили критические значения t-критерия для проверки гипотезы H0:δ=0 в зависимости от вида модели регрессии и объёма выборочной совокупности. Данные статистики обозначаются как τ – для первой модели регрессии, τμ – для второй модели регрессии, τх – для третьей модели регрессии. Они приведены в таблице критических значений статистик Дикки-Фуллера для различных уровней значимости.
При проверке гипотезы о наличии во временном ряду авторегрессии более чем первого порядка используется расширенный критерий Дикки-Фуллера (Augmented Dickey-Fuller Test – ADF).
Процесс авторегрессии порядка р можно записать следующим образом:
Основная гипотеза формулируется как H0:δ=0. Если данная гипотеза верна, то данная модель авторегрессии имеет единичный корень, т. е. подчиняется процессу авторегрессии первого порядка.
Проверка основной гипотезы H0:δ=0 осуществляется для различных типов регрессионных уравнений:
Справедливость основной гипотезы проверяется с помощью статистики τ для первой модели регрессии (при отсутствии свободного члена и временного тренда).
Справедливость основной гипотезы проверяется с помощью статистики τμ для второй модели регрессии, включающей свободный член.
Справедливость основной гипотезы проверяется с помощью статистики τх для третьей модели регрессии, включающей свободный член и временной линейный тренд.
Если сумма коэффициентов модели регрессии вида
равна единице, т. е.
т. е. в данной модели имеется единичный корень.
Проверкой наличия единичных корней называется задача проверки основной гипотезы вида
H0:ρ=0 в модели авторегрессии первого порядка:
yt=a+ρyt–1+εt.
Для данного ряда справедливы следующие предположения:
1) временной ряд yt является стационарным, если выполняется условие – 1‹ρ‹1;
2) временной ряд yt является нестационарным и представляет собой модель со случайным трендом, если выполняется условие ρ=1;
3) временной ряд yt также является нестационарным, если выполняется условие ρ›0.
Таким образом, гипотеза о стационарности временного ряда yt состоит в проверке основной гипотезы вида H0:ρ=1.
Критерий Дикки-Фуллера используется при проверке гипотезы о наличия единичных корней.
При этом выдвигается основная гипотеза вида H0:ρ=1 для модели авторегрессии первого порядка:
yt=a+ρyt–1+εt.
Однако на следующем этапе оценивается не эта модель авторегрессии, а модель, которая получается после перехода к первым разностям:
Δyt=δyt-1+εt,
где δ=ρ–1.
Проверка основной гипотезы вида H0:ρ=1 для исходной модели авторегрессии первого порядка аналогична проверке гипотезы H0:δ=0 для полученной модели. Проверка данной гипотезы может осуществляться для трёх типов регрессионных уравнений:
Δyt=δyt-1+εt;(1)
Δyt=а+δyt-1+εt; (2)
Δyt=а+δyt-1+βt+εt. (3)
Данные модели регрессии отличаются только наличием членов модели a и βt.
Первая модель является моделью случайного тренда, во вторую модель включается свободный член a, являющийся коэффициентом случайного тренда. В третью модель включены и коэффициент случайного тренда, и коэффициент линейного временного тренда βt.
Проверка основной гипотезы H0:δ=0 состоит в оценивании методом наименьших квадратов одной или нескольких из моделей регрессии 1, 2, 3 для получения оценки и её стандартной ошибки.
Наблюдаемое значение t-критерия для проверки основной гипотезы вида H0:δ=0 состоит в оценивании методом наименьших квадратов одной или нескольких из моделей регрессии 1, 2, 3 для получения оценки
и её стандартной ошибки.
Наблюдаемое значение t-критерия для проверки основной гипотезы вида H0:β=0 рассчитывают по формуле:
где
– стандартная ошибка оценки
Однако критическое значение t-критерия в данном случае нельзя определить по таблице распределения Стьюдента. Дикки и Фуллер провели исследования, в результате которых определили критические значения t-критерия для проверки гипотезы H0:δ=0 в зависимости от вида модели регрессии и объёма выборочной совокупности. Данные статистики обозначаются как τ – для первой модели регрессии, τμ – для второй модели регрессии, τх – для третьей модели регрессии. Они приведены в таблице критических значений статистик Дикки-Фуллера для различных уровней значимости.
При проверке гипотезы о наличии во временном ряду авторегрессии более чем первого порядка используется расширенный критерий Дикки-Фуллера (Augmented Dickey-Fuller Test – ADF).
Процесс авторегрессии порядка р можно записать следующим образом:
Основная гипотеза формулируется как H0:δ=0. Если данная гипотеза верна, то данная модель авторегрессии имеет единичный корень, т. е. подчиняется процессу авторегрессии первого порядка.
Проверка основной гипотезы H0:δ=0 осуществляется для различных типов регрессионных уравнений:
Справедливость основной гипотезы проверяется с помощью статистики τ для первой модели регрессии (при отсутствии свободного члена и временного тренда).
Справедливость основной гипотезы проверяется с помощью статистики τμ для второй модели регрессии, включающей свободный член.
Справедливость основной гипотезы проверяется с помощью статистики τх для третьей модели регрессии, включающей свободный член и временной линейный тренд.
Если сумма коэффициентов модели регрессии вида
равна единице, т. е.
т. е. в данной модели имеется единичный корень.