97. Метод Алмон
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Для оценки неизвестных коэффициентов модели с распределённым лагом применяется метод Алмон или лаги Алмон.
Данный метод можно применять к моделям, которые характеризуются полиномиальной структурой лага и конечной величиной лага L:
yt=β0+β1xt+β2xt–1+…+βLxt–L+εt. (1)
Структура лага определяется графическим методом при отражении зависимости параметров при факторных переменных от величины лага.
Алгоритм метода Алмон реализуется в несколько этапов:
Суть метода Алмон состоит в следующем:
1) зависимость коэффициентов при факторных переменных βi от величины лага i аппроксимируется полиномиальной функцией:
а) первого порядка βi=c0+c1*i
б) второго порядка
в) третьего порядка
г) в общем случае полиномиальной функцией порядка P:
Алмон доказал, рассчитать оценки коэффициентов
намного проще, чем найти оценки непосредственно коэффициентов βi. Подобный метод оценивания коэффициентов βi называется полиномиальной аппроксимацией.
2) каждый коэффициент модели (1) можно выразить следующим образом:
β1=c0;
β2=c0+c1+…+cP;
β3=c0+2c1+4c2+…+2PcP;
β4=c0+3c1+9c2+…+3PcP;
…
βL=c0+Lc1+L2c2+…+LPcP.
Подставим полученные выражения для коэффициентов βi в модель (1):
yt=β0+c0xt+( c0+c1+…+cP)xt–1+…+( βL=c0+Lc1+L2c2+…+LPcP)xt–L+εt.
3) в полученном выражении перегруппируем слагаемые:
Обозначим слагаемые в скобках при коэффициентах
как новые переменные:
С учётом новых переменных модель примет вид:
yt=β0+c0z0+c1z1+…+cPzP+εt. (2)
4) оценки неизвестных коэффициентов модели (2) можно рассчитать с помощью традиционного метода наименьших квадратов. Далее на основе полученных оценок коэффициентов
5) найдём оценки коэффициентов
модели (1), используя соотношения, полученные на первом шаге.
К основным недостаткам метода Алмон относятся:
1) необходимо заранее знать величину максимального временного лага L, однако на практике это невозможно. Определить величину лага L можно с помощью вычисления показателей тесноты связи, например, линейных парных коэффициентов корреляции, между результативной переменной у и лаговым значением факторной переменной х. Если показатель тесноты связи является значимым, то данную переменную необходимо включить в модель с распределённым лагом. Порядок максимального значимого показателя тесноты связи принимается в качестве максимальной величины лага L;
2) порядок полиномиальной функции Р также заранее неизвестен. При выборе порядка полинома обычно исходят из того, что на практике не используются полиномы более второго порядка, а выбранная степень полинома должна быть на единицу меньше числа экстремумов в структуре лага;
3) если между факторные переменные коррелируют друг с другом, то новые переменные
которые являются линейной комбинацией факторных переменных x, будут также коррелировать между собой. Поэтому проблема мультиколлинеарности в преобразованной модели (2) устранена не полностью. Однако мультиколлинеарность новых переменных zi в меньшей степени отражается на оценках неизвестных коэффициентов βi исходной модели (1), чем при использовании традиционного метода наименьших квадратов к данной модели.
Основным преимуществом метода Алмон является то, что данный метод является универсальным и может быть использован при моделировании процессов, которые характеризуются различными структурами лагов.
Для оценки неизвестных коэффициентов модели с распределённым лагом применяется метод Алмон или лаги Алмон.
Данный метод можно применять к моделям, которые характеризуются полиномиальной структурой лага и конечной величиной лага L:
yt=β0+β1xt+β2xt–1+…+βLxt–L+εt. (1)
Структура лага определяется графическим методом при отражении зависимости параметров при факторных переменных от величины лага.
Алгоритм метода Алмон реализуется в несколько этапов:
Суть метода Алмон состоит в следующем:
1) зависимость коэффициентов при факторных переменных βi от величины лага i аппроксимируется полиномиальной функцией:
а) первого порядка βi=c0+c1*i
б) второго порядка
в) третьего порядка
г) в общем случае полиномиальной функцией порядка P:
Алмон доказал, рассчитать оценки коэффициентов
намного проще, чем найти оценки непосредственно коэффициентов βi. Подобный метод оценивания коэффициентов βi называется полиномиальной аппроксимацией.
2) каждый коэффициент модели (1) можно выразить следующим образом:
β1=c0;
β2=c0+c1+…+cP;
β3=c0+2c1+4c2+…+2PcP;
β4=c0+3c1+9c2+…+3PcP;
…
βL=c0+Lc1+L2c2+…+LPcP.
Подставим полученные выражения для коэффициентов βi в модель (1):
yt=β0+c0xt+( c0+c1+…+cP)xt–1+…+( βL=c0+Lc1+L2c2+…+LPcP)xt–L+εt.
3) в полученном выражении перегруппируем слагаемые:
Обозначим слагаемые в скобках при коэффициентах
как новые переменные:
С учётом новых переменных модель примет вид:
yt=β0+c0z0+c1z1+…+cPzP+εt. (2)
4) оценки неизвестных коэффициентов модели (2) можно рассчитать с помощью традиционного метода наименьших квадратов. Далее на основе полученных оценок коэффициентов
5) найдём оценки коэффициентов
модели (1), используя соотношения, полученные на первом шаге.
К основным недостаткам метода Алмон относятся:
1) необходимо заранее знать величину максимального временного лага L, однако на практике это невозможно. Определить величину лага L можно с помощью вычисления показателей тесноты связи, например, линейных парных коэффициентов корреляции, между результативной переменной у и лаговым значением факторной переменной х. Если показатель тесноты связи является значимым, то данную переменную необходимо включить в модель с распределённым лагом. Порядок максимального значимого показателя тесноты связи принимается в качестве максимальной величины лага L;
2) порядок полиномиальной функции Р также заранее неизвестен. При выборе порядка полинома обычно исходят из того, что на практике не используются полиномы более второго порядка, а выбранная степень полинома должна быть на единицу меньше числа экстремумов в структуре лага;
3) если между факторные переменные коррелируют друг с другом, то новые переменные
которые являются линейной комбинацией факторных переменных x, будут также коррелировать между собой. Поэтому проблема мультиколлинеарности в преобразованной модели (2) устранена не полностью. Однако мультиколлинеарность новых переменных zi в меньшей степени отражается на оценках неизвестных коэффициентов βi исходной модели (1), чем при использовании традиционного метода наименьших квадратов к данной модели.
Основным преимуществом метода Алмон является то, что данный метод является универсальным и может быть использован при моделировании процессов, которые характеризуются различными структурами лагов.