84. Показатели качества модели авторегрессии и проинтегрированного скользящего среднего
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Основными показателями качества модели авторегрессии и проинтегрированного скользящего среднего являются критерий Акайка и байесовский критерий Шварца. Данные критерии аналогичны критерию максимума скорректированного множественного коэффициента детерминации R2или минимума дисперсии случайной ошибки модели G2.
Информационный критерий Акайка (Akaike information criterion – AIC) используется для выбора наилучшей модели для временного ряда yt из некоторого множества моделей.
Предположим, что с помощью метода максимального правдоподобия была получена оценка
вектора неизвестных параметров модели φ. Обозначим через
максимальное значение логарифмической функции правдоподобия эконометрической модели.
Тогда критерий Акайка можно будет представить в виде:
где h – размерность вектора неизвестных параметров модели φ.
Для линейной или нелинейной модели регрессии, включающей только одно уравнение, критерий Акайка может быть преобразован к виду:
где n – объём выборочной совокупности;
– оценка максимального правдоподобия дисперсии остатков etмодели регрессии.
Оба варианта критерия Акайка дают одинаковый результат, но в первом случае выбирается модель с наибольшим значением критерия, а во втором случае – с наименьшим значением критерия.
Байесовский критерий Шварца (Schwarz Bayesian criterion – SBC) также используется для выбора наилучшей модели временного ряда из некоторого множества моделей.
Байесовский критерий Шварца для временных рядов можно представить в виде:
Байесовский критерий Шварца для моделей регрессии можно представить в виде:
По первому варианту расчёта критерия Байесовского критерий Шварца SBC выбирается та модель, для которой значение SBCt является наибольшим. При втором варианте выбирается та модель, для которой значение SBCG является наименьшим.
При проверке качества моделей результаты критериев Акайка и Шварца могут быть различны.
Общий критерий множителей Лагранжа (LM-test) применяется для проверки качества модели авторегрессии и проинтегрированного скользящего среднего с помощью автокорреляции остатков. С помощью данного критерия можно обнаружить в остатках регрессии автокорреляцию более высоких порядков, чем первый, но при этом необходимо, чтобы выборочная совокупность была достаточно велика.
Предположим, что на основании собранных данных была построена модель регрессии вида:
где εt – случайная ошибка модели:
εt=ρ1εt–1+ρ2εt–2+…+ρpεt-p+ut;
ρ – коэффициент автокорреляции порядка (1…ρ);
ut – нормально распределённая случайная величина с нулевым математическим ожиданием и дисперсией G2: ut ~N(0,G2).
Данная модель регрессии может в качестве факторных переменных включать лаговые значения зависимой переменной. Поэтому необходимо проверить основную гипотезу H0 о незначимости коэффициентов автокорреляции:
H0:ρ1=ρ2=…=ρp=0.
Альтернативная гипотеза формулируется как утверждение о значимости коэффициентов автокорреляции:
H1:ρ1≠ρ2≠…≠ρp≠0.
Проверка выдвинутых гипотез осуществляется с помощью общего критерия множителей Лагранжа в несколько этапов:
1) оценки неизвестных коэффициентов модели регрессии вида
рассчитываются с помощью метода наименьших квадратов;
2) рассчитываются остатки модели регрессии et:
3) определяются оценки модели регрессия вида:
Для данной модели осуществляется проверка значимости коэффициентов ρi при лаговых значениях остатков. Для этого вычисляется F-статистика, которая распределена по χ2 закону распределения с p степенями свободы. Если наблюдаемое значение χ2-критерия больше критического значения χ2-критерия, т. е.
то основная гипотеза об отсутствии автокорреляции в остатках отвергается. Если наблюдаемое значение χ2-критерия меньше критического значения χ2-критерия, т. е.
то гипотеза об отсутствии автокорреляции принимается.
Основными показателями качества модели авторегрессии и проинтегрированного скользящего среднего являются критерий Акайка и байесовский критерий Шварца. Данные критерии аналогичны критерию максимума скорректированного множественного коэффициента детерминации R2или минимума дисперсии случайной ошибки модели G2.
Информационный критерий Акайка (Akaike information criterion – AIC) используется для выбора наилучшей модели для временного ряда yt из некоторого множества моделей.
Предположим, что с помощью метода максимального правдоподобия была получена оценка
вектора неизвестных параметров модели φ. Обозначим через
максимальное значение логарифмической функции правдоподобия эконометрической модели.
Тогда критерий Акайка можно будет представить в виде:
где h – размерность вектора неизвестных параметров модели φ.
Для линейной или нелинейной модели регрессии, включающей только одно уравнение, критерий Акайка может быть преобразован к виду:
где n – объём выборочной совокупности;
– оценка максимального правдоподобия дисперсии остатков etмодели регрессии.
Оба варианта критерия Акайка дают одинаковый результат, но в первом случае выбирается модель с наибольшим значением критерия, а во втором случае – с наименьшим значением критерия.
Байесовский критерий Шварца (Schwarz Bayesian criterion – SBC) также используется для выбора наилучшей модели временного ряда из некоторого множества моделей.
Байесовский критерий Шварца для временных рядов можно представить в виде:
Байесовский критерий Шварца для моделей регрессии можно представить в виде:
По первому варианту расчёта критерия Байесовского критерий Шварца SBC выбирается та модель, для которой значение SBCt является наибольшим. При втором варианте выбирается та модель, для которой значение SBCG является наименьшим.
При проверке качества моделей результаты критериев Акайка и Шварца могут быть различны.
Общий критерий множителей Лагранжа (LM-test) применяется для проверки качества модели авторегрессии и проинтегрированного скользящего среднего с помощью автокорреляции остатков. С помощью данного критерия можно обнаружить в остатках регрессии автокорреляцию более высоких порядков, чем первый, но при этом необходимо, чтобы выборочная совокупность была достаточно велика.
Предположим, что на основании собранных данных была построена модель регрессии вида:
где εt – случайная ошибка модели:
εt=ρ1εt–1+ρ2εt–2+…+ρpεt-p+ut;
ρ – коэффициент автокорреляции порядка (1…ρ);
ut – нормально распределённая случайная величина с нулевым математическим ожиданием и дисперсией G2: ut ~N(0,G2).
Данная модель регрессии может в качестве факторных переменных включать лаговые значения зависимой переменной. Поэтому необходимо проверить основную гипотезу H0 о незначимости коэффициентов автокорреляции:
H0:ρ1=ρ2=…=ρp=0.
Альтернативная гипотеза формулируется как утверждение о значимости коэффициентов автокорреляции:
H1:ρ1≠ρ2≠…≠ρp≠0.
Проверка выдвинутых гипотез осуществляется с помощью общего критерия множителей Лагранжа в несколько этапов:
1) оценки неизвестных коэффициентов модели регрессии вида
рассчитываются с помощью метода наименьших квадратов;
2) рассчитываются остатки модели регрессии et:
3) определяются оценки модели регрессия вида:
Для данной модели осуществляется проверка значимости коэффициентов ρi при лаговых значениях остатков. Для этого вычисляется F-статистика, которая распределена по χ2 закону распределения с p степенями свободы. Если наблюдаемое значение χ2-критерия больше критического значения χ2-критерия, т. е.
то основная гипотеза об отсутствии автокорреляции в остатках отвергается. Если наблюдаемое значение χ2-критерия меньше критического значения χ2-критерия, т. е.
то гипотеза об отсутствии автокорреляции принимается.