54. Многофакторные производственные функции

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

Многофакторной производственной функцией называется функция, которая характеризует зависимость объёма производства от n-го количества факторов производства.

y=f(xi),

где

Многофакторные производственные функции полезны тем, что на их основе можно рассчитать целый ряд важнейших экономических показателей.

К основным показателям многофакторных производственных функций относятся:

1) показатель средней производительности (эффективности, отдачи) i-го фактора при условии фиксированности всех остальных факторов:

2) показатель предельной производительности (эффективности, отдачи) i-го фактора, который характеризует приращение объёма производства на единицу приращения i-го фактора, рассчитывается как частная производная по факторной переменной xi:

3) для определения характера изменения предельной производительности с изменением объёма i-го фактора при постоянном значении всех остальных факторов, включённых в модель, рассчитывается частная производная второго порядка по факторной переменной xi:

Если показатель

больше нуля, то предельная производительность возрастает с ростом объёма i-ой факторной переменной.

Если показатель

равен нулю, то можно найти такое значение объёма i-ой факторной переменной, при котором предельная производительность будет или минимальной или максимальной.

4) показатель частной эластичности i-го ресурса для многофакторной производственной функции характеризует относительное изменение результата производства на единицу относительного изменения i-ой факторной переменной:

5) потребность производства в i-том факторе выражается через функциональную зависимость вида:

xi=φ(y,x1…xi-1,xi+1…xn).

6) для любой пары факторов производства i и j можно рассчитать предельную норму замещения j-ой факторной переменной i-той факторной переменной. Эта норма равна взятому со знаком минус отношению показателей предельной производительности i-ой и j-ой факторных переменных:

При выборе конкретного вида производственной функции исследователь должен руководствоваться закономерностями изменения всех рассмотренных показателей. В некоторых случаях выбранную форму производственной функции приходится отвергать, потому что соответствующая ей система показателей противоречит результатам качественного анализа или эмпирическим данным. С другой стороны предварительные заключения о характере изменений рассмотренных показателей могут стать основным доводом в пользу выбора той или иной формы производственной функции.

Многофакторной производственной функцией называется функция, которая характеризует зависимость объёма производства от n-го количества факторов производства.

y=f(xi),

где

Многофакторные производственные функции полезны тем, что на их основе можно рассчитать целый ряд важнейших экономических показателей.

К основным показателям многофакторных производственных функций относятся:

1) показатель средней производительности (эффективности, отдачи) i-го фактора при условии фиксированности всех остальных факторов:

2) показатель предельной производительности (эффективности, отдачи) i-го фактора, который характеризует приращение объёма производства на единицу приращения i-го фактора, рассчитывается как частная производная по факторной переменной xi:

3) для определения характера изменения предельной производительности с изменением объёма i-го фактора при постоянном значении всех остальных факторов, включённых в модель, рассчитывается частная производная второго порядка по факторной переменной xi:

Если показатель

больше нуля, то предельная производительность возрастает с ростом объёма i-ой факторной переменной.

Если показатель

равен нулю, то можно найти такое значение объёма i-ой факторной переменной, при котором предельная производительность будет или минимальной или максимальной.

4) показатель частной эластичности i-го ресурса для многофакторной производственной функции характеризует относительное изменение результата производства на единицу относительного изменения i-ой факторной переменной:

5) потребность производства в i-том факторе выражается через функциональную зависимость вида:

xi=φ(y,x1…xi-1,xi+1…xn).

6) для любой пары факторов производства i и j можно рассчитать предельную норму замещения j-ой факторной переменной i-той факторной переменной. Эта норма равна взятому со знаком минус отношению показателей предельной производительности i-ой и j-ой факторных переменных:

При выборе конкретного вида производственной функции исследователь должен руководствоваться закономерностями изменения всех рассмотренных показателей. В некоторых случаях выбранную форму производственной функции приходится отвергать, потому что соответствующая ей система показателей противоречит результатам качественного анализа или эмпирическим данным. С другой стороны предварительные заключения о характере изменений рассмотренных показателей могут стать основным доводом в пользу выбора той или иной формы производственной функции.