58. Тест Глейзера обнаружения гетероскедастичности остатков модели регрессии
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Существует несколько тестов на обнаружение гетероскедастичности остатков модели регрессии.
Рассмотрим применение теста Глейзера на примере линейной модели парной регрессии.
Предположим, что на основе проведённого исследования зависимость между переменными можно аппроксимировать линейной моделью парной регрессии вида:
yi=β0+β1xi.
Неизвестные коэффициенты β0и β1линейной модели парной регрессии определяются с помощью метода наименьших квадратов. В результате мы получим оценённую модель регрессии вида:
После этого необходимо рассчитать остатки модели регрессии по формуле:
Полученные остатки модели регрессии возводятся в квадрат:
Далее для обнаружения гетероскедастичности остатков данной модели регрессии необходимо рассчитать коэффициент Спирмена между квадратами регрессионных остатков
и значениями факторной переменной xi.
Коэффициент Спирмена является аналогом парного коэффициента корреляции, однако, с его помощью можно оценить тесноту зависимости не только между количественными, но и между количественными и качественными переменными.
В качестве зависимой переменной будет выступать квадрат остатков модели регрессии
в качестве независимой переменной – значения факторной переменной xi.
Значения независимой переменной xi ранжируется и располагается по возрастанию. Ранги обозначаются как Rx. Далее проставляются ранги зависимой переменной
обозначаемые как Re.
Коэффициент Спирмена рассчитывается по формуле:
где d – ранговая разность (Rx– Re);
n – количество пар вариантов.
Далее необходимо проверить значимость вычисленного коэффициента Спирмена.
При проверке значимости коэффициента Спирмена выдвигается основная гипотеза о его незначимости:
Н0: Кспир=0.
Тогда конкурирующей или альтернативной гипотезой будет гипотеза вида:
Н1: Кспир≠0.
Проверка выдвинутых гипотез осуществляется с помощью t-критерия Стьюдента.
Наблюдаемое значение t-критерия (вычисленное на основе выборочных данных) сравнивают с критическим значением t-критерия, которое определяется по таблице распределения Стьюдента.
Критическое значение t-критерия tкрит(а, n-2) определяется по таблице распределения Стьюдента, где а – уровень значимости, (n-2) – число степеней свободы, n – объём выборочной совокупности.
Наблюдаемое значение t-критерия при проверке основной гипотезы вида Н0: Кспир=0 рассчитывается по формуле:
При проверке гипотез возможны следующие ситуации.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|›tкрит, то основная гипотеза отвергается, и между переменной xi и остатками регрессионной модели
существует взаимосвязь, т. е. в модели присутствует гетероскедастичность.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю меньше или равно критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|≤tкрит, то основная гипотеза принимается, и в модели парной регрессии гетероскедастичность отсутствует.
Если тест Глейзера проводился для линейной модели множественной регрессии, то при принятии основной гипотезы делается вывод о том, что гетероскедастичность не зависит от выбранной переменной xmi.
Существует несколько тестов на обнаружение гетероскедастичности остатков модели регрессии.
Рассмотрим применение теста Глейзера на примере линейной модели парной регрессии.
Предположим, что на основе проведённого исследования зависимость между переменными можно аппроксимировать линейной моделью парной регрессии вида:
yi=β0+β1xi.
Неизвестные коэффициенты β0и β1линейной модели парной регрессии определяются с помощью метода наименьших квадратов. В результате мы получим оценённую модель регрессии вида:
После этого необходимо рассчитать остатки модели регрессии по формуле:
Полученные остатки модели регрессии возводятся в квадрат:
Далее для обнаружения гетероскедастичности остатков данной модели регрессии необходимо рассчитать коэффициент Спирмена между квадратами регрессионных остатков
и значениями факторной переменной xi.
Коэффициент Спирмена является аналогом парного коэффициента корреляции, однако, с его помощью можно оценить тесноту зависимости не только между количественными, но и между количественными и качественными переменными.
В качестве зависимой переменной будет выступать квадрат остатков модели регрессии
в качестве независимой переменной – значения факторной переменной xi.
Значения независимой переменной xi ранжируется и располагается по возрастанию. Ранги обозначаются как Rx. Далее проставляются ранги зависимой переменной
обозначаемые как Re.
Коэффициент Спирмена рассчитывается по формуле:
где d – ранговая разность (Rx– Re);
n – количество пар вариантов.
Далее необходимо проверить значимость вычисленного коэффициента Спирмена.
При проверке значимости коэффициента Спирмена выдвигается основная гипотеза о его незначимости:
Н0: Кспир=0.
Тогда конкурирующей или альтернативной гипотезой будет гипотеза вида:
Н1: Кспир≠0.
Проверка выдвинутых гипотез осуществляется с помощью t-критерия Стьюдента.
Наблюдаемое значение t-критерия (вычисленное на основе выборочных данных) сравнивают с критическим значением t-критерия, которое определяется по таблице распределения Стьюдента.
Критическое значение t-критерия tкрит(а, n-2) определяется по таблице распределения Стьюдента, где а – уровень значимости, (n-2) – число степеней свободы, n – объём выборочной совокупности.
Наблюдаемое значение t-критерия при проверке основной гипотезы вида Н0: Кспир=0 рассчитывается по формуле:
При проверке гипотез возможны следующие ситуации.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю больше критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|›tкрит, то основная гипотеза отвергается, и между переменной xi и остатками регрессионной модели
существует взаимосвязь, т. е. в модели присутствует гетероскедастичность.
Если наблюдаемое значение t-критерия (вычисленное по выборочным данным) по модулю меньше или равно критического значения t-критерия (определённого по таблице распределения Стьюдента), т. е. |tнабл|≤tкрит, то основная гипотеза принимается, и в модели парной регрессии гетероскедастичность отсутствует.
Если тест Глейзера проводился для линейной модели множественной регрессии, то при принятии основной гипотезы делается вывод о том, что гетероскедастичность не зависит от выбранной переменной xmi.