56. Метод максимума правдоподобия
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Метод максимума правдоподобия (maximum likelihood function) применяется для определения неизвестных коэффициентов модели регрессии и является альтернативой методу наименьших квадратов. Суть данного метода состоит в максимизации функции правдоподобия или её логарифма.
Общий вид функции правдоподобия:
где
– это геометрическая сумма, означающая перемножение вероятностей по всем возможным случаям внутри скобок.
Предположим, что на основании полученных данных была построена модель регрессии бинарного выбора, где результативная переменная представлена с помощью латентной переменной:
Следовательно, вероятность события, что результативная переменная yi примет значение, равное единице, можно выразить следующим образом:
Вероятность события, что результативная переменная yi примет значение, равное нулю, можно выразить следующим образом:
В связи с тем, что для вероятностей считается справедливым равенство вида:
функция правдоподобия может быть записана как геометрическая сумма вероятностей наблюдений:
Для логит-регрессии и пробит-регрессии функция правдоподобия строится через сумму натуральных логарифмов правдоподобия следующим образом:
Оценки неизвестных параметров логит-регрессии и пробит-регрессии определяются с помощью максимизации функции правдоподобия:
Для определения максимума функции l(β,X) необходимо вычислить частные производные этой функции по каждому из оцениваемых параметров и приравнять их к нулю. Результатом данной процедуры будет стационарная система уравнений:
С помощью преобразований данной системы уравнений переходим к системе нормальных уравнений, решениями которой и будут оценки максимального правдоподобия
Прежде, чем использовать пробит-регрессию и логит-регрессию для прогнозирования или анализа, необходимо проверить значимость вычисленных коэффициентов пробит и логит регрессий и моделей регрессии в целом. Подобная проверка осуществляется с помощью величины (l1-l0), где параметр l1 соответствует максимально правдоподобной оценке основной модели регрессии, а параметр l0 – оценка нулевой модели регрессии, т. е. yi=β0.
При проверке значимости коэффициентов пробит или логит-регрессии выдвигается основная гипотеза о незначимости данных коэффициентов:
H0:β1=β2=…=βk=0.
Тогда конкурирующей или альтернативной гипотезой будет гипотеза вида:
H1:β1≠β2≠…≠βk≠0.
Для проверки выдвинутых гипотез рассчитывается величина H=-2(l1–l0), которая распределена по χ2закону распределения с k степенями свободы.
Критическое значение χ2-критерия определяется по таблице по β2распределения в зависимости от заданного значения вероятности а и степени свободы k.
При проверке гипотез возможны следующие ситуации:
Если величина H больше критического значение χ2-критерия, т.е.
то основная гипотеза отвергается, и коэффициенты модели регрессии являются значимыми. Следовательно, модель пробит или логит-регрессии также является значимой.
Если величина H меньше критического значение β2-критерия, т. е.
то основная гипотеза принимается, и коэффициенты модели регрессии являются незначимыми. Следовательно, модель пробит или логит-регрессии также является незначимой.
Оценки неизвестных коэффициентов модели регрессии, полученные методом максимума правдоподобия, удовлетворяют следующему утверждению.
Пусть ω – это элемент, принадлежащий заданному пространству А. Если А является открытым интервалом, а функция L(ω) дифференцируема и достигает максимума в заданном интервале A, то оценки максимального правдоподобия удовлетворяют равенству вида:
Докажем данное утверждение на примере модели логит-регрессии.
Функция максимального правдоподобия для модели логит-регрессии имеет вид:
Продифференцируем полученную функцию по параметру β:
Следовательно, утверждение можно считать доказанным.
В том случае, если для модели регрессии справедливы предпосылки нормальной линейной модели регрессии, то оценки неизвестных коэффициентов, полученные с помощью метода наименьших квадратов, и оценки, полученные с помощью метода максимума правдоподобия, будут совпадать.
Метод максимума правдоподобия (maximum likelihood function) применяется для определения неизвестных коэффициентов модели регрессии и является альтернативой методу наименьших квадратов. Суть данного метода состоит в максимизации функции правдоподобия или её логарифма.
Общий вид функции правдоподобия:
где
– это геометрическая сумма, означающая перемножение вероятностей по всем возможным случаям внутри скобок.
Предположим, что на основании полученных данных была построена модель регрессии бинарного выбора, где результативная переменная представлена с помощью латентной переменной:
Следовательно, вероятность события, что результативная переменная yi примет значение, равное единице, можно выразить следующим образом:
Вероятность события, что результативная переменная yi примет значение, равное нулю, можно выразить следующим образом:
В связи с тем, что для вероятностей считается справедливым равенство вида:
функция правдоподобия может быть записана как геометрическая сумма вероятностей наблюдений:
Для логит-регрессии и пробит-регрессии функция правдоподобия строится через сумму натуральных логарифмов правдоподобия следующим образом:
Оценки неизвестных параметров логит-регрессии и пробит-регрессии определяются с помощью максимизации функции правдоподобия:
Для определения максимума функции l(β,X) необходимо вычислить частные производные этой функции по каждому из оцениваемых параметров и приравнять их к нулю. Результатом данной процедуры будет стационарная система уравнений:
С помощью преобразований данной системы уравнений переходим к системе нормальных уравнений, решениями которой и будут оценки максимального правдоподобия
Прежде, чем использовать пробит-регрессию и логит-регрессию для прогнозирования или анализа, необходимо проверить значимость вычисленных коэффициентов пробит и логит регрессий и моделей регрессии в целом. Подобная проверка осуществляется с помощью величины (l1-l0), где параметр l1 соответствует максимально правдоподобной оценке основной модели регрессии, а параметр l0 – оценка нулевой модели регрессии, т. е. yi=β0.
При проверке значимости коэффициентов пробит или логит-регрессии выдвигается основная гипотеза о незначимости данных коэффициентов:
H0:β1=β2=…=βk=0.
Тогда конкурирующей или альтернативной гипотезой будет гипотеза вида:
H1:β1≠β2≠…≠βk≠0.
Для проверки выдвинутых гипотез рассчитывается величина H=-2(l1–l0), которая распределена по χ2закону распределения с k степенями свободы.
Критическое значение χ2-критерия определяется по таблице по β2распределения в зависимости от заданного значения вероятности а и степени свободы k.
При проверке гипотез возможны следующие ситуации:
Если величина H больше критического значение χ2-критерия, т.е.
то основная гипотеза отвергается, и коэффициенты модели регрессии являются значимыми. Следовательно, модель пробит или логит-регрессии также является значимой.
Если величина H меньше критического значение β2-критерия, т. е.
то основная гипотеза принимается, и коэффициенты модели регрессии являются незначимыми. Следовательно, модель пробит или логит-регрессии также является незначимой.
Оценки неизвестных коэффициентов модели регрессии, полученные методом максимума правдоподобия, удовлетворяют следующему утверждению.
Пусть ω – это элемент, принадлежащий заданному пространству А. Если А является открытым интервалом, а функция L(ω) дифференцируема и достигает максимума в заданном интервале A, то оценки максимального правдоподобия удовлетворяют равенству вида:
Докажем данное утверждение на примере модели логит-регрессии.
Функция максимального правдоподобия для модели логит-регрессии имеет вид:
Продифференцируем полученную функцию по параметру β:
Следовательно, утверждение можно считать доказанным.
В том случае, если для модели регрессии справедливы предпосылки нормальной линейной модели регрессии, то оценки неизвестных коэффициентов, полученные с помощью метода наименьших квадратов, и оценки, полученные с помощью метода максимума правдоподобия, будут совпадать.