9. Общая модель парной (однофакторной) регрессии
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Общая модель парной регрессии характеризует связь между двумя переменными, которая проявляется как некоторая закономерность лишь в среднем в целом по совокупности наблюдений.
Регрессионным анализом называется определение аналитического выражения связи между исследуемыми переменными, в котором изменение результативной переменной происходит под влиянием факторной переменной.
Модель регрессии или уравнение регрессии позволяет количественно оценить взаимосвязь между исследуемыми переменными.
Предположим, что имеется набор значений двух переменных: yi (результативная переменная) и xi (факторная переменная). Между этими переменными существует зависимость вида: y = f (x).
Задача регрессионного анализа состоит в том, чтобы по данным наблюдений определить такую функцию ỹ = f (x), которая наилучшим образом описывала исследуемую зависимость между переменными.
Для определения аналитической формы зависимости между исследуемыми переменными применяются следующие методы:
1) графический метод или визуальная оценка характера связи. В этом случае на линейном графике по оси абсцисс откладываются значения факторной переменной х, а по оси ординат – значения результативной переменной у. Затем на пересечении соответствующих значений отмечаются точки. Полученный точечный график в системе координат (х, у) называется корреляционным полем. Линия, которая соединяет точки на графике, называется эмпирической линией. По её виду можно судить не только о наличии, но и о форме зависимости между изучаемыми переменными;
2) на основе теоретического и логического анализа природы изучаемых явлений, их социально-экономической сущности;
3) определение аналитической формы зависимости между переменными экспериментальным путём.
При исследовании зависимости между двумя переменными чаще всего используется линейная форма связи. Это связано с двумя обстоятельствами:
1) чёткая экономическая интерпретация параметров линейной модели регрессии;
2) в большинстве случаев нелинейные модели регрессии преобразуются к линейному виду.
Общий вид модели парной регрессии зависимости переменной у от переменной х:
yi=β0+β1xi+εi,
где yi– результативные переменные,
xi– факторные переменные,
β0, β1 – параметры модели регрессии, подлежащие оцениванию;
εi – случайная ошибка модели регрессии. Данная величина является случайной, она характеризует отклонения реальных значений результативных переменных от теоретических, рассчитанных по уравнению регрессии.
Присутствие случайной ошибки в модели регрессии порождено следующими источниками:
1) нерепрезентативность выборки. Модель парной регрессии в большинстве случаев является большим упрощением истинной зависимости между переменными, потому что в модель входит только одна факторная переменная, не способная полностью объяснить вариацию результативной переменной. При этом результативная переменная может быть подвержена влиянию множества других факторных переменных в гораздо большей степени;
2) ошибки, возникающие при измерении данных;
3) неправильная функциональная спецификация модели.
Коэффициент β1, входящий в модельпарной регрессии, называется коэффициентом регрессии. Он характеризует, на сколько в среднем изменится результативная переменная у при условии изменения факторной переменной х на единицу своего измерения. Знак коэффициента регрессии указывает на направление связи между переменными:
1) если β1›0, то связь между изучаемыми переменными (с уменьшением факторной переменной х уменьшается и результативная переменная у, и наоборот);
2) если β1‹0, то связь между изучаемыми переменными (с увеличением факторной переменной х результативная переменная у уменьшается, и наоборот).
Коэффициент β0, входящий в модель парной регрессии, трактуется как среднее значение результативной переменной у при условии, что факторная переменная х равна нулю. Но если факторная переменная не имеет и не может иметь нулевого значения, то подобная трактовка коэффициента β0 не имеет смысла.
Общий вид модели парной регрессии в матричном виде:
Y= X* β+ ε,
где
– случайный вектор-столбец значений результативной переменной размерности n x 1;
– матрица значений факторной переменной размерности n x 2. Первый столбец является единичным, потому что в модели регрессии коэффициент β0 умножается на единицу;
– вектор-столбец неизвестных коэффициентов модели регрессии размерности 2 x 1;
– случайный вектор-столбец ошибок модели регрессии размерности n x 1.
Общая модель парной регрессии характеризует связь между двумя переменными, которая проявляется как некоторая закономерность лишь в среднем в целом по совокупности наблюдений.
Регрессионным анализом называется определение аналитического выражения связи между исследуемыми переменными, в котором изменение результативной переменной происходит под влиянием факторной переменной.
Модель регрессии или уравнение регрессии позволяет количественно оценить взаимосвязь между исследуемыми переменными.
Предположим, что имеется набор значений двух переменных: yi (результативная переменная) и xi (факторная переменная). Между этими переменными существует зависимость вида: y = f (x).
Задача регрессионного анализа состоит в том, чтобы по данным наблюдений определить такую функцию ỹ = f (x), которая наилучшим образом описывала исследуемую зависимость между переменными.
Для определения аналитической формы зависимости между исследуемыми переменными применяются следующие методы:
1) графический метод или визуальная оценка характера связи. В этом случае на линейном графике по оси абсцисс откладываются значения факторной переменной х, а по оси ординат – значения результативной переменной у. Затем на пересечении соответствующих значений отмечаются точки. Полученный точечный график в системе координат (х, у) называется корреляционным полем. Линия, которая соединяет точки на графике, называется эмпирической линией. По её виду можно судить не только о наличии, но и о форме зависимости между изучаемыми переменными;
2) на основе теоретического и логического анализа природы изучаемых явлений, их социально-экономической сущности;
3) определение аналитической формы зависимости между переменными экспериментальным путём.
При исследовании зависимости между двумя переменными чаще всего используется линейная форма связи. Это связано с двумя обстоятельствами:
1) чёткая экономическая интерпретация параметров линейной модели регрессии;
2) в большинстве случаев нелинейные модели регрессии преобразуются к линейному виду.
Общий вид модели парной регрессии зависимости переменной у от переменной х:
yi=β0+β1xi+εi,
где yi– результативные переменные,
xi– факторные переменные,
β0, β1 – параметры модели регрессии, подлежащие оцениванию;
εi – случайная ошибка модели регрессии. Данная величина является случайной, она характеризует отклонения реальных значений результативных переменных от теоретических, рассчитанных по уравнению регрессии.
Присутствие случайной ошибки в модели регрессии порождено следующими источниками:
1) нерепрезентативность выборки. Модель парной регрессии в большинстве случаев является большим упрощением истинной зависимости между переменными, потому что в модель входит только одна факторная переменная, не способная полностью объяснить вариацию результативной переменной. При этом результативная переменная может быть подвержена влиянию множества других факторных переменных в гораздо большей степени;
2) ошибки, возникающие при измерении данных;
3) неправильная функциональная спецификация модели.
Коэффициент β1, входящий в модельпарной регрессии, называется коэффициентом регрессии. Он характеризует, на сколько в среднем изменится результативная переменная у при условии изменения факторной переменной х на единицу своего измерения. Знак коэффициента регрессии указывает на направление связи между переменными:
1) если β1›0, то связь между изучаемыми переменными (с уменьшением факторной переменной х уменьшается и результативная переменная у, и наоборот);
2) если β1‹0, то связь между изучаемыми переменными (с увеличением факторной переменной х результативная переменная у уменьшается, и наоборот).
Коэффициент β0, входящий в модель парной регрессии, трактуется как среднее значение результативной переменной у при условии, что факторная переменная х равна нулю. Но если факторная переменная не имеет и не может иметь нулевого значения, то подобная трактовка коэффициента β0 не имеет смысла.
Общий вид модели парной регрессии в матричном виде:
Y= X* β+ ε,
где
– случайный вектор-столбец значений результативной переменной размерности n x 1;
– матрица значений факторной переменной размерности n x 2. Первый столбец является единичным, потому что в модели регрессии коэффициент β0 умножается на единицу;
– вектор-столбец неизвестных коэффициентов модели регрессии размерности 2 x 1;
– случайный вектор-столбец ошибок модели регрессии размерности n x 1.