82. Линейные модели стационарного временного ряда

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

Стохастический временной ряд называется стационарным, если его математическое ожидание, дисперсия, автоковариация и автокорреляция являются неизменными во времени.

К основным линейным моделям стационарных временных рядов относятся:

1) модели авторегрессии;

2) модели скользящего среднего;

3) модели авторегрессии скользящего среднего.

Уровень временного ряда, представленного моделью авторегрессии порядка р, можно представить следующим образом:

yt=δ1yt-1+δ2yt-2+…+δpyt–p+νt,

где p – порядок модели авторегрессии;

δt – коэффициенты модели авторегрессии, подлежащие оцениванию;

νt – белый шум (случайная величина с нулевым математическим ожиданием).

Модель авторегрессии порядка р обозначается как АР(р) или AR(p).

На практике чаще всего используются модели авторегрессии первого, второго, максимум третьего порядков.

Модель авторегрессии первого порядка АР(1) называется “Марковским процессом”, потому что значения переменной y в текущий момент времени t зависят только от значений переменной y в предыдущий момент времени (t–1). Данная модель имеет вид:

yt=δyt–1+νt.

Для модели АР(1) действует ограничение |δ|<1.

Модель авторегрессии второго порядка АР(2) называется “процессом Юла”. Данная модель имеет вид:

yt=δ1yt-1+δ2yt-2+νt.

На коэффициенты модели авторегрессии второго порядка накладываются ограничения вида:

1) (δ1+δ2)<1;

2) (δ1–δ2)<1;

3) |δ2|<1.

Модели скользящего среднего относятся к простому классу моделей временных рядов с конечным числом параметров, которые можно получить, представив уровень временного ряда как алгебраическую сумму членов ряда белого шума с числом слагаемых q.

Общая модель скользящего среднего порядка q имеет вид:

yt=νt–φ1νt–1–φ2νt–2–…–φqνt–q,

где q – порядок модели скользящего среднего;

φt – неизвестные коэффициенты модели, подлежащие оцениванию;

νt – белый шум.

Модель скользящего среднего порядка q обозначается как CC(q) или MA(q).

На практике чаще всего используются модели скользящего среднего первого CC(1) и второго порядков CC(2).

Коэффициенты модели скользящего среднего порядка q не обязательно должны в сумме давать единицу и не обязательно должны быть положительными.

Для достижения большей гибкости модели временных рядов при эконометрическом моделировании в неё включают как члены авторегрессии, так и члены скользящего среднего. Подобные модели получили название смешанных моделей авторегрессии скользящего среднего и также относятся к линейным моделям стационарных временных рядов.

Смешанная модель авторегрессии скользящего среднего обозначается как АРСС(p,q) или ARMA(p,q).

Чаще всего на практике используется смешанная модель АРСС(1) с одним параметром авторегрессии p=1 и одним параметром скользящего среднего q=1. Данная модель имеет вид:

yt=δyt–1+νt–φνt–1,

где δ – параметр процесса авторегрессии;

φ – параметр процесса скользящего среднего;

νt – белый шум.

На коэффициенты данной модели накладываются следующие ограничения:

1) |δ|<1 – условие, обеспечивающее стационарность смешанной модели;

2) |φ|‹1 – условие, обеспечивающее обратимость смешанной модели.

Свойство обратимости смешанной модели АРСС(p,q) означает, что модель скользящего среднего можно обратить или переписать в виде модели авторегрессии неограниченного порядка, и наоборот.

Стохастический временной ряд называется стационарным, если его математическое ожидание, дисперсия, автоковариация и автокорреляция являются неизменными во времени.

К основным линейным моделям стационарных временных рядов относятся:

1) модели авторегрессии;

2) модели скользящего среднего;

3) модели авторегрессии скользящего среднего.

Уровень временного ряда, представленного моделью авторегрессии порядка р, можно представить следующим образом:

yt=δ1yt-1+δ2yt-2+…+δpyt–p+νt,

где p – порядок модели авторегрессии;

δt – коэффициенты модели авторегрессии, подлежащие оцениванию;

νt – белый шум (случайная величина с нулевым математическим ожиданием).

Модель авторегрессии порядка р обозначается как АР(р) или AR(p).

На практике чаще всего используются модели авторегрессии первого, второго, максимум третьего порядков.

Модель авторегрессии первого порядка АР(1) называется “Марковским процессом”, потому что значения переменной y в текущий момент времени t зависят только от значений переменной y в предыдущий момент времени (t–1). Данная модель имеет вид:

yt=δyt–1+νt.

Для модели АР(1) действует ограничение |δ|<1.

Модель авторегрессии второго порядка АР(2) называется “процессом Юла”. Данная модель имеет вид:

yt=δ1yt-1+δ2yt-2+νt.

На коэффициенты модели авторегрессии второго порядка накладываются ограничения вида:

1) (δ1+δ2)<1;

2) (δ1–δ2)<1;

3) |δ2|<1.

Модели скользящего среднего относятся к простому классу моделей временных рядов с конечным числом параметров, которые можно получить, представив уровень временного ряда как алгебраическую сумму членов ряда белого шума с числом слагаемых q.

Общая модель скользящего среднего порядка q имеет вид:

yt=νt–φ1νt–1–φ2νt–2–…–φqνt–q,

где q – порядок модели скользящего среднего;

φt – неизвестные коэффициенты модели, подлежащие оцениванию;

νt – белый шум.

Модель скользящего среднего порядка q обозначается как CC(q) или MA(q).

На практике чаще всего используются модели скользящего среднего первого CC(1) и второго порядков CC(2).

Коэффициенты модели скользящего среднего порядка q не обязательно должны в сумме давать единицу и не обязательно должны быть положительными.

Для достижения большей гибкости модели временных рядов при эконометрическом моделировании в неё включают как члены авторегрессии, так и члены скользящего среднего. Подобные модели получили название смешанных моделей авторегрессии скользящего среднего и также относятся к линейным моделям стационарных временных рядов.

Смешанная модель авторегрессии скользящего среднего обозначается как АРСС(p,q) или ARMA(p,q).

Чаще всего на практике используется смешанная модель АРСС(1) с одним параметром авторегрессии p=1 и одним параметром скользящего среднего q=1. Данная модель имеет вид:

yt=δyt–1+νt–φνt–1,

где δ – параметр процесса авторегрессии;

φ – параметр процесса скользящего среднего;

νt – белый шум.

На коэффициенты данной модели накладываются следующие ограничения:

1) |δ|<1 – условие, обеспечивающее стационарность смешанной модели;

2) |φ|‹1 – условие, обеспечивающее обратимость смешанной модели.

Свойство обратимости смешанной модели АРСС(p,q) означает, что модель скользящего среднего можно обратить или переписать в виде модели авторегрессии неограниченного порядка, и наоборот.