82. Линейные модели стационарного временного ряда
К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
Стохастический временной ряд называется стационарным, если его математическое ожидание, дисперсия, автоковариация и автокорреляция являются неизменными во времени.
К основным линейным моделям стационарных временных рядов относятся:
1) модели авторегрессии;
2) модели скользящего среднего;
3) модели авторегрессии скользящего среднего.
Уровень временного ряда, представленного моделью авторегрессии порядка р, можно представить следующим образом:
yt=δ1yt-1+δ2yt-2+…+δpyt–p+νt,
где p – порядок модели авторегрессии;
δt – коэффициенты модели авторегрессии, подлежащие оцениванию;
νt – белый шум (случайная величина с нулевым математическим ожиданием).
Модель авторегрессии порядка р обозначается как АР(р) или AR(p).
На практике чаще всего используются модели авторегрессии первого, второго, максимум третьего порядков.
Модель авторегрессии первого порядка АР(1) называется “Марковским процессом”, потому что значения переменной y в текущий момент времени t зависят только от значений переменной y в предыдущий момент времени (t–1). Данная модель имеет вид:
yt=δyt–1+νt.
Для модели АР(1) действует ограничение |δ|<1.
Модель авторегрессии второго порядка АР(2) называется “процессом Юла”. Данная модель имеет вид:
yt=δ1yt-1+δ2yt-2+νt.
На коэффициенты модели авторегрессии второго порядка накладываются ограничения вида:
1) (δ1+δ2)<1;
2) (δ1–δ2)<1;
3) |δ2|<1.
Модели скользящего среднего относятся к простому классу моделей временных рядов с конечным числом параметров, которые можно получить, представив уровень временного ряда как алгебраическую сумму членов ряда белого шума с числом слагаемых q.
Общая модель скользящего среднего порядка q имеет вид:
yt=νt–φ1νt–1–φ2νt–2–…–φqνt–q,
где q – порядок модели скользящего среднего;
φt – неизвестные коэффициенты модели, подлежащие оцениванию;
νt – белый шум.
Модель скользящего среднего порядка q обозначается как CC(q) или MA(q).
На практике чаще всего используются модели скользящего среднего первого CC(1) и второго порядков CC(2).
Коэффициенты модели скользящего среднего порядка q не обязательно должны в сумме давать единицу и не обязательно должны быть положительными.
Для достижения большей гибкости модели временных рядов при эконометрическом моделировании в неё включают как члены авторегрессии, так и члены скользящего среднего. Подобные модели получили название смешанных моделей авторегрессии скользящего среднего и также относятся к линейным моделям стационарных временных рядов.
Смешанная модель авторегрессии скользящего среднего обозначается как АРСС(p,q) или ARMA(p,q).
Чаще всего на практике используется смешанная модель АРСС(1) с одним параметром авторегрессии p=1 и одним параметром скользящего среднего q=1. Данная модель имеет вид:
yt=δyt–1+νt–φνt–1,
где δ – параметр процесса авторегрессии;
φ – параметр процесса скользящего среднего;
νt – белый шум.
На коэффициенты данной модели накладываются следующие ограничения:
1) |δ|<1 – условие, обеспечивающее стационарность смешанной модели;
2) |φ|‹1 – условие, обеспечивающее обратимость смешанной модели.
Свойство обратимости смешанной модели АРСС(p,q) означает, что модель скользящего среднего можно обратить или переписать в виде модели авторегрессии неограниченного порядка, и наоборот.
Стохастический временной ряд называется стационарным, если его математическое ожидание, дисперсия, автоковариация и автокорреляция являются неизменными во времени.
К основным линейным моделям стационарных временных рядов относятся:
1) модели авторегрессии;
2) модели скользящего среднего;
3) модели авторегрессии скользящего среднего.
Уровень временного ряда, представленного моделью авторегрессии порядка р, можно представить следующим образом:
yt=δ1yt-1+δ2yt-2+…+δpyt–p+νt,
где p – порядок модели авторегрессии;
δt – коэффициенты модели авторегрессии, подлежащие оцениванию;
νt – белый шум (случайная величина с нулевым математическим ожиданием).
Модель авторегрессии порядка р обозначается как АР(р) или AR(p).
На практике чаще всего используются модели авторегрессии первого, второго, максимум третьего порядков.
Модель авторегрессии первого порядка АР(1) называется “Марковским процессом”, потому что значения переменной y в текущий момент времени t зависят только от значений переменной y в предыдущий момент времени (t–1). Данная модель имеет вид:
yt=δyt–1+νt.
Для модели АР(1) действует ограничение |δ|<1.
Модель авторегрессии второго порядка АР(2) называется “процессом Юла”. Данная модель имеет вид:
yt=δ1yt-1+δ2yt-2+νt.
На коэффициенты модели авторегрессии второго порядка накладываются ограничения вида:
1) (δ1+δ2)<1;
2) (δ1–δ2)<1;
3) |δ2|<1.
Модели скользящего среднего относятся к простому классу моделей временных рядов с конечным числом параметров, которые можно получить, представив уровень временного ряда как алгебраическую сумму членов ряда белого шума с числом слагаемых q.
Общая модель скользящего среднего порядка q имеет вид:
yt=νt–φ1νt–1–φ2νt–2–…–φqνt–q,
где q – порядок модели скользящего среднего;
φt – неизвестные коэффициенты модели, подлежащие оцениванию;
νt – белый шум.
Модель скользящего среднего порядка q обозначается как CC(q) или MA(q).
На практике чаще всего используются модели скользящего среднего первого CC(1) и второго порядков CC(2).
Коэффициенты модели скользящего среднего порядка q не обязательно должны в сумме давать единицу и не обязательно должны быть положительными.
Для достижения большей гибкости модели временных рядов при эконометрическом моделировании в неё включают как члены авторегрессии, так и члены скользящего среднего. Подобные модели получили название смешанных моделей авторегрессии скользящего среднего и также относятся к линейным моделям стационарных временных рядов.
Смешанная модель авторегрессии скользящего среднего обозначается как АРСС(p,q) или ARMA(p,q).
Чаще всего на практике используется смешанная модель АРСС(1) с одним параметром авторегрессии p=1 и одним параметром скользящего среднего q=1. Данная модель имеет вид:
yt=δyt–1+νt–φνt–1,
где δ – параметр процесса авторегрессии;
φ – параметр процесса скользящего среднего;
νt – белый шум.
На коэффициенты данной модели накладываются следующие ограничения:
1) |δ|<1 – условие, обеспечивающее стационарность смешанной модели;
2) |φ|‹1 – условие, обеспечивающее обратимость смешанной модели.
Свойство обратимости смешанной модели АРСС(p,q) означает, что модель скользящего среднего можно обратить или переписать в виде модели авторегрессии неограниченного порядка, и наоборот.