4.6. 6. Сравнение NPV и IRR методов

К оглавлению1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 
187 188 189 190 191 192 193 194 195 196 

 

            К сожалению NPV и IRR методы могут конфликтовать друг с другом. Рассмотрим этот феномен на конкретном примере. Произведем оценку сравнительной эффективности  двух проектов с одинаковыми исходными инвестициями, но с различными входными денежными потоками. Исходные данные для расчета эффективности помещены в следующей таблице.

Таблица 4.6.8. Денежные потоки альтернативных проектов

Год

Проект А

Проект В

0

($1,000)

($1,000)

1

500

100

2

400

300

3

300

400

4

100

600

 

            Для дальнейшего анализа используем так называемый NPV - профиль, который по определению представляет собой зависимость показателя NPV от стоимости капитала проекта.

Рассчитаем NPV для различных значений стоимости капитала.

Таблица 4.6.9. Показатели NPV для альтернативных проектов

r

Проект А

Проект В

0

300

400

5

180.42

206.50

10

78.82

49.18

15

(8.33)

(80.14)

 

Графики NPV профилей для проектов будут иметь вид, представленный на рис. 4.6.1.

            Решив уравнения, определяющие внутреннюю норму доходности, получим:

для проекта А IRR=14.5%,

для проекта В IRR=11.8%.

Таким образом, по критерию внутренней нормы доходности предпочтение следует отдать проекту А, как имеющему большее значение IRR. В то же время NPV-метод неоднозначно дает вывод в пользу проекта А.

Проанализировав соотношение NPV-профилей, которые имеют пересечение в точке  , составляющей в данном случае значение 7.2%, приходим к следующему выводу:

если r > , оба метода дают одинаковый результат,

если r < , методы конфликтуют:  NPV-метод принимает проект В, IRR-метод принимает проект А.

Рис. 4.6.1. NPV профили альтернативных проектов

            Следует отметить, что этот конфликт имеет место только при анализе взаимоисключающих друг друга проектов. Для отдельно взятых проектов оба метода дают один и тот же результат, положительное значение NPV всегда соответствует ситуации, когда внутренняя норма доходности превышает стоимость капитала.

 

 

            К сожалению NPV и IRR методы могут конфликтовать друг с другом. Рассмотрим этот феномен на конкретном примере. Произведем оценку сравнительной эффективности  двух проектов с одинаковыми исходными инвестициями, но с различными входными денежными потоками. Исходные данные для расчета эффективности помещены в следующей таблице.

Таблица 4.6.8. Денежные потоки альтернативных проектов

Год

Проект А

Проект В

0

($1,000)

($1,000)

1

500

100

2

400

300

3

300

400

4

100

600

 

            Для дальнейшего анализа используем так называемый NPV - профиль, который по определению представляет собой зависимость показателя NPV от стоимости капитала проекта.

Рассчитаем NPV для различных значений стоимости капитала.

Таблица 4.6.9. Показатели NPV для альтернативных проектов

r

Проект А

Проект В

0

300

400

5

180.42

206.50

10

78.82

49.18

15

(8.33)

(80.14)

 

Графики NPV профилей для проектов будут иметь вид, представленный на рис. 4.6.1.

            Решив уравнения, определяющие внутреннюю норму доходности, получим:

для проекта А IRR=14.5%,

для проекта В IRR=11.8%.

Таким образом, по критерию внутренней нормы доходности предпочтение следует отдать проекту А, как имеющему большее значение IRR. В то же время NPV-метод неоднозначно дает вывод в пользу проекта А.

Проанализировав соотношение NPV-профилей, которые имеют пересечение в точке  , составляющей в данном случае значение 7.2%, приходим к следующему выводу:

если r > , оба метода дают одинаковый результат,

если r < , методы конфликтуют:  NPV-метод принимает проект В, IRR-метод принимает проект А.

Рис. 4.6.1. NPV профили альтернативных проектов

            Следует отметить, что этот конфликт имеет место только при анализе взаимоисключающих друг друга проектов. Для отдельно взятых проектов оба метода дают один и тот же результат, положительное значение NPV всегда соответствует ситуации, когда внутренняя норма доходности превышает стоимость капитала.